
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

IW 4-

iv

V

af
Yovin

V 13 u - 2 31 J
MANAGE^S "NE[OOK TOP

SOF- jA,	 (NkSA)	 59 P
CSCL 09D

H:	 filiclas

G3/ f 1	
190-7 .7 —

It.

Mace Ad

Goddwd	 C"tw

a
	

SOFTWARE ENGINEERING LABORATORY SERIES
	

SE
X43

ANAG E R"S HANDBOOK FOR
;SOFTWARE DEVELOPMENT

A

i1r-RiL a^()At

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

V ^

f

FOREWORD

«6

The Software Engineering Laboratory (SEL) is an organization sponsored by tae National Aeronautics and
Space Administration/Goddard Space Flight Center (NASA/GSFC) and created for the purpose of investigating
the effectiveness of software engineering technologies when applied to the development of applications soft-
ware. The SEL was created in 1977 and has three primary organizational members: NASA/GSFC, Systems
Development and Analysis Branch; University of Maryland, Computer Sciences Department; Computer Sciences
Corporation, Flight Systems Operation.

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to
n measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then

to apply successful development practices. The activities, findinga, and recommendations of the SEL are re-
corded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
A version of this documeni was also issued as Computer Sciences Corporation document CSC/TM-83/6177.
The contributors to this document include 	 i

4
	 William Agresti, Computer Sciences Corporation

Frank McGarry, Goddard Space Flight Center
•	 David Card, Computer Sciences Corporation

Jerry Page, Computer Sciences Corporation
Victor Church, Computer Sciences Corporation
Roger Werking, Goddard Space Flight Center

Single copies of this document can be obtained by writing to

ti-	 Frank E. McGarry
Code 582
NASA/GSFC
Greenbelt, MD 20771	 i

_.. r	 r

it
v.

nee

:

T	 PRECEDING PAGE BLANK NOT FILMrjy

Y,	
S

... •I^• ^.I - .wlM^r•	 y .3 	 •	 •.......:.^.I•M'IN!Mw:Rr"S!•.^^. 	 ,^...	 '.•^^i^.^^

ABSTRACT

Methods and aids for the management of software development projects are presented, The recommenda-
tions are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics
software development. The management aspects of the following subjects are described; organizing the proj-
ect, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents,
using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.

PRIECEDING PAGE BLANK ?'RIOT k LjNIrry

4f!
4

R'.

r}

r

^"	 J

d

{

J

rx

k.

hi

ti.

r

fr

n

V

A '

P	 I

E

f^

J

tr

g

%

k

X

TABLE OF CONTENTS

Section 1—Introduction
	

1.1
Handbook Overview
	

1-2
Intended Audience
	

1-2
Software Life Cycle
	

1-3

Section 2--Organizing and Planning
	

2.1

Organizing the Project
	

2-1
Producing the Software Development/Management Plan

	
2-2

Executing the Software Development/Management Plan
	

2-2
Section 3--Cost Estimating, Scheduling, and Si-affing

	
3.1

Estimating Development Cost and Schedule
	

3-1

Project Staffing
	

3-4

Other Software Development Costs
	

3-5

Cost of Computer Utilization
	

3-5

Cost of System Documentation
	

3-6

Cost of Rehosting Software
	

3-6

Cost of Reusing Software
	

3-6

Cost of Software Maintenance
	

3-6

Section 4—Key Documents and Deliverables
	

4-1

Suggested Contents of Documents and Deliverables
	

4-1

Guidelines for Evaluating Completed Documents
	

4-10

Section 5—Key Management Aids
	

5.1

Configuration Management Tools
	

5-1

Project Cost Control
	

5-1

Project Histories Data Base
	

5-1

Section 6—Key Indicators, Warning Signals, and Corrective Measures
	

6-1

Key Indicators of Project Status
	

6-1

Warning Signals and Corrective Measures
	

6 -2
Section 7— Reviews and Audits

	
7-1

Reviews
	

7-1

System Requirements Review
	

7 -2
Preliminary Design Review

	
7-4

Critical Design Review
	

7-6

Operational Readiness Review
	

7-8

Audits
	

7-10

Section 8—Testing and Certification
	

8-1

Testing
	

8-1

Certification
	

8-1

Glossary
References
Bibliography of SEL Literature

'	 111ZECEDING PAGE BLANK NOT FILMED	
vii

LIST OF ILLUSTRATIONS

Figure

1-1 Activities by Percentage of Total Development Staff Effort 1.1
2 . 1 Software Development/Management Plan Contents 2-3
3-1 Cost Estimation Schedule 3-1
3-2 Typical Computer Utilization Profile 3.5
4. 1 Key Documents and Deliverables by Phase 4-1
4-2 Requirements Analysis Summary Report Contents 4-2
4-3 Preliminary Design Report Contents 4-3
4-4 Detailed Design Document Contents 4.4
4-5 Test Plan Contents 4-5
4-6 User's Guide Contents 4-6
4-7 System Description Contents 4-7
4-8 Software Development History Contents 4-8
4-9 System Delivery Tape Contents 4-9
5-1 Role of Project Histories Data Base in Management Control 5-2
7-1 Scheduling of Formal Reviews 7-1
7-2 SRR Hardcopy Material 7-3
7-3 PDR Hardcopy Material 7-5
7-4 CDR Hardcopy Material 7-7
7-5 ORR Hardcopy Material 7-9
8-1 Example of Unit Code Certification 8-1

LIST OF TABLES

Table

1-1 Software Development Environment 1-1
3-1 Distribution of Time Schedule and Effort Over Phases 3-1
3-2 Procedures for Reestimating Size, Cost, and Schedule During

Development 3-3
3-3 Complexity Guideline 3-3
3-4 Development Team Experience Guideline 3-4
3-5 Team Size Guideline 3-4
3-6 Staffing Pattern Guideline 3-4
3-7 Team Composition Guideline 3-5
3-8 Cost of Rehosting Software 3-6
3-9 Cost of Reusing Software 3.6

r

i

viii

-	 +'

H
h
t

!r

r
j

o	 !^

n

z

.AL

SECTION I--INTRODUCTION

This handbook is intended to be a convenient reference on software management methods and aids. The ap-
proach is to offer concise information describing

• What the methods and aids can accomplish
• When they can be applied
• How they are applied
• Where the manager can find more background or explanatory material

The management methods and aids included here are those that have proved effective in the experiences of
the Software Engineering Laboratory (SEL) (Reference 1). Table 1-1 lists the characteristics of the software
projects that the SEL has analyzed in the flight dynamics environment. The applications include attitude deter-
mination and control, orbit adjustment, maneuver planning, and general mission analysis.

Table 1-1. Software Development Environmen!

PROCESS CHARACTERISTICS AVG. HIGH LOW

duration (months) 16 21 13
Effort (staff years) 8 11 2
Size (1000 source lines of code)

Developed 57 111 21
Delivered 62 112 33

Staff (full-time equivalent)
Average 5 6 2
Peak 10 14 2
Individuals 14 17 7

Application Experience (years)
Managers 6 7 5
Technical Staff 4 5 3

Overall Experience (years)
Managers 10 14 8
Technical Staff 9 11 7

NOTES: Type of Software: Scientific, ground-based, interactive graphic.
Languages: 85 percent FORTRAN, 16 percent assembler macros.
Machines: IBM S/360 and 4341; DEC POP and VAX.

r

,

•v- -.0 - ice. - .n- _.. 'Y

Y

HANDBOOK OVERVIEW
This document consists of eight sections organized by specific management topics:
Section 1 presents the handbook's purpose, oega.nization, and Intended audience and summarizes the soft-
ware life cycle.
Section 2 discusses the basic management concerns of organizing and planning in the context of software
management. The prodiration of the software development/management plan is covered in detail.
Section 3 describes resource estimation and allocation. Techniques are presented for estimating size, costs,
and effort. Guidelines are given for project scheduling c -td for staff allocation and composition.
Section 4 outlines contents, timing, and evaluation of key documents and deliverables in a software project.
Section S discusses management tools and aids and briefly describes some automated management tools.
Section 6 covers monitoring and controlling a software project that is already underway. Key indicators of
progress are listed along with warning signals and corresponding corrective measures.
Section 7 presents both the general function of project reviews and the specific implementation of the four
major reviews. Guidelines for auditing a project arc also introduced.
Section 8 discusses the management aspects of testing and certification.

A glossary, references, and a bibliography of SEL literature conclude the handbook.

INTENDED AUDIENCE
The intended audience of this document is the software manager, who, as defined, in this handbook, serves
as either an administrative or technical manager. The positFons overlap somewhat in their information needs.
The administrative manager has overall responsibility for developing software that meets requirements and
is delivered on time and within budget. In the SEL environment, a Government Technical Officer or Assistant
Technical Representative (ATR) generally serves in this capacity. Typically, this manager is not involved with
the day-to-day technical supervision of the .programmers and analysts who are developing the software. The
administrative manager will be involved in the activities listed below; the corresponding handbook sections
are listed alongside.

• Organizing the project	 Section 2
• Estimating resources required	 Section 3
• Estimating costs	 Section 3
• Evaluating documents and deliverables Section 4
• Monitoring progress 	 Section 6
• Evaluating results of reviews and audits Section 7
• Certifying the final product	 Section 8

The technical manager is responsible for direct supervision of the developers. The position is frequently filled
by a contractor manager in the SEL environment, although, on some projects, a Government manager will
fulfill this role instead. This person shares some of the activities listed for the administrative manager, especially
with regard to monitoring development progress. The technical manager's activities and the corresponding
handbook references are presented below.

• Producing and executing the software
development/management plan 	 Section 2

• Estimating costs	 Section 3
• Scheduling the project 	 Section 3
• Staffing the project	 Section 3
• Directing the production of documents

and deliverables	 Section 4
• Using automated management aids	 Section 5
• Monitoring development progress	 Section 6
• Supervising technical staff 	 Section 6
• Preparing for reviews	 Section 7

1-2

q

s

SYSTEM TESTING I	 I
PHASE

ACCEPTANCE
TESTING
PHASE

IMPLEMENTATION (CODE
AND UNIT TESTING)

PHASE
PRE

I

REQUIREMENTS
	 CALENDAR TIME ^►

ANALYSIS
PHASE

MAINTENANCE
AND OPERATION

PHASE

'J	
4.1,

^:	 S

	

P k	 T.

ty

,,I a

	

it' S	
fU

	

Y	 (I

r

i

li

.f

{

II

t^

4=

i'
U..

ra

d

S:

na

i^

i.

a

OF POOR QU ajj iy

A secondary audience for the handbook consists of those who serve a particular peripheral function but do
not act In either of the two managerial capacities. Two examples of such specific functions are participatirg
as an external reviewer at a scheduled review and conducting an audit of the project.

SOFTWARE LIFE CYCLE

The process of software development involves much more than coding the problem in a programming language.
It is often modeled as a series of stages that define the software life cycle. In the flight dynamics environment,
the life cycle is preceded by a requirements definition and functional specification phase. The life cycle itself
is defined by the following seven phases:

• Requirements analysis
• Preliminary design
• Detailed design
• Implementation (code and unit testing)
• System testing
• Acceptance testing
• Maintenance and operation

As shown in Figure 1-1, the phases divide the software life cycle into seven sequential time periods that do
not overlap. However, the activities characteristic of one phase may be performed in other phases. For exam-
ple, although most of the staff effort in requirements analysis occurs during the first phase, some of that
activity continues at lower levels in later phases.

SR
1
R	 PDR$	 CDR*	 OR"

-.rwv ^+r^ '1S ^ 1--^	 1^Tf f f f	 ^Rl^.e^lr t.rr.....r

NOTE: FOR EXAMPLE, AT THE END OF THE IMPLEMENTATION PHASE (NTH DASHED LINE), APPROXIMATELY 78% OF THE STAFF ARE
INVOLVED IN SYSTEM INTEGRATION AND TESTING; APPROXIMATELY 2% ARE ADDRESSING REQUIREMENTS CHANGES OR
PROBLEMS: APPROXIMATELY 2% ARE DESIGNING MODIFICATIONS; AND APPROXIMATELY 17% ARE CODING AND UNIT
TESTING CHANGES.

Figure 1-1. Activities by Percentage of Total Development Staff Effort

1-•3

The life cycle phases are Important reference points for the software manager. For example, in monitoring
a project, the manager may find that the key indicators of project condition at one phase are not available
at other phases. Milestones in the progress of a software project are keyed to the reviews, documents, and
deliverables that mark the transitions between phases. Management aids and resource estimates can be ap-
plied only at certain phases because their use depends on the availability of specific information.
Although requirements analysis is the first phase In the SEI, software development life cycle, it is preceded
by the work of the requirements definition team, which completes the draft of the ftnctional specifications
and requirements document. During requirements analysis, the development team analyzes this document,
assesses its completeness, identifies to-be-determined (TBD) requirements, specifies external Interfaces, and
decides on initial resource allocation. The results are given to the requirements definition team for incorpora-
tion into the final version of the functional specifications and requirements document. The conclusion of this
phase is marked by the development team's preparation of the requirements analysis summary report and
by the system requirements review (SRR), at which the completeness of the requirements is evaluated.
The functional specifications and requirements document is the starting point for the preliminary design ac-
tivity. During this second phase, the development team defines the software system architecture and specifies
the major functional subsystems, input-output interfaces, and processing modes. The preliminary design review
(ADR), conducted at the end of this phase, provides an opportunity for evaluating the functional design
presented by the development team.
In the third phase, detailed design, the system architecture defined during the previous phase is elaborated
in successively greater detail, to the level of subroutines. The development team fully describes user input,
system output, input-output files, and intermodule interfaces. An implementation plan is produced, describ-
ing a series of builds and releases that culminate with the delivered software system. The corresponding documen-
tation, including complete baseline diagrams, makes up the detailed design document. At the critical design
review (CDR), the detailed design is evaluated to determine if the levels of detail and completeness are suffi-
cient for coding to begin.
During the implementation (code and unit testing) phase, the development team codes the required modules
using the detailed design document. The system grows as new modules are coded, tested, and integrated. The 	 o
developers also revise and test old code and integrate it into the evolving system. Implementation is complete
when all code is integrated into the system and when supporting documents (system test plan and drafts of
the user's guide and system description) are written.
The fifth phase, system testing, involves the functional testing of the end-to-end system capabilities according
to the system test plan. The development team validates the completely integr-ted system. Successful comple-
tion of the tests required by the system test plan marks the end of this phase.
During the sixth phase, acceptance testing, an acceptance testing team (usually independent of the software	 -
development team) examines the completed system to determine if the original requirements have been met. 	 -
Acceptance testing is complete whe.: all tests specified in the acceptance test plan have been run successfully.
An operational readiness review (ORR) is conducted to evaluate the system's readiness to begin operational
support.
The last phase, maintenance and operation, begins when acceptance testing ends. The system becomes the
responsibility of the maintenance and operation group. The nature and extent of activity during this phase
depend on the type of software developed. For some support software, the maintenance and operation phase
may be very active due to the changing needs of the users. Flight dynamics software, however, typically re-
quires few changes during its lifetime. Because of its relatively minor role in the flight dynamics environment,
the maintenance and operation phase is not covered further.
The management methods and aids in this handbook are associated with the first six phases, from requirements
analysis through acceptance testing. Reference 2 contains a more detailed explanation of life cycle phases and
activities.

1-4

2-1

u

A

ar

SECTION Z--ORGANIZING AND PLANNING

The key to successful software management is to generate a realistic, usable plan and then follow it. The critical
early stages of organizing and planning lay the foundation for effective project management and control.

i4
u

ORGANIZING THE PROJECT
To get started, the manager must gain a clear understanding of the scope of the project and must establish

i	 the basis for control. The major initial concerns relate to clarifying the requirements, the deliverables, and
the organizational framework. By addressing the four sets of questions below, the manager will be led to an

y >	 understanding of the key elements that will affect project planning.

Identifying the Requirements
What functions must the system perform?
Are the boundaries of the system visible;

.	 With what other systems will this s;stem Interact?
In what form does the job definition exist?
Is the current job definition understandable?
Does the project depend on external events or activities?

Identifying the Products and DeliverablesOs
What documents, programs, and files are specified as deliverable products?
When must they be delivered?
In what form are the deliverables, e.g., draft copies or on tape?
Who will receive the deliverables and accept the final product?
What criteria will be used to judge the acceptability of the final product?

Preparing for Control
1 Is there a timetable for periodic reporting of project status?

What is the procedure for incorporating requirements changes that affect the scope of the work?
What reviews will be necessary to mark the transitions between phases?

Establishing an Organizational Identity
Who will be the key contact people from the customer, developer, and support groups?
Do the different groups understand their areas of project responsibility?
Where will the development work be done?
Which development computers will be used?
What level of access to the computers will be required?

r:

i

Y	
„	 R

n	 Jir` ! i1^_ ^M mow'. •	 ^ 1	 .

PRODUCING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN
In many environments, the softest;:., management plan and the software development plan are separate policy
documents with different orientations. The management plan Is directed toward the broader aspects of ad-
ministration and control, e.g., project-level monitoring of resource expenditures and the functioning of the
configuration control board. The development plan focuses more on methods and approaches to software
production, e.g., testing strategies and programming methodologies. Although these differences exist between
the two plans, there is generally some material In common. In fact, the situation parallels the discussion In
Section I of the partially overlapping needs of the two intended audiences for this document, the, administrative
managers and technical managers.
In the flight dynamics environment of the SEL, the two plans arc combined into a single document, the soft-
ware development/management plan. Either approach is acceptable; organizations may find It more effective
to produce two separate plans or to adopt the single-plan approach. Regardless of the choice, the critical issue
Is the awareness that, for a project to be successful, the items in this section must be addressed formally in
a planning document or documents. Although the remainder of this section lescribes the contents of a single
comb'Aaed plan, the reader is encouraged to separate the contents into two separate plans if that is more ap-
propriate to the needs of his/her environment.
Tim, software development/management plan provides a disciplined approach to organizing and managing
the software project. A successful plan serves as

• A structured checklist of important questions
• Consistent documentation for project organization
• A baseline reference with which to compare actual project performance and experiences
,# 	 detailed clarification of the management approach to be used

By completing the plan early in the life cycle, the manager becomes familiar with the essential steps of organizing
the development effort:

• Estimating resources
• Establishing schedules
• Assembling a staff
• Setting milestones

Writing the plan can begin as soon as any information about the project definition and scope becomes available.
Producing the plan is made easier where some text (e.g., descriptions or methods, tools, and reviews) is not
likely to change substantially from previous projects. The plan should be complete after the requirements ?naiysis
phase, except for information available only at later phases. If items in the software development/management
plan are missing for any reason, the manager should indicate who will supply the information and when it will
be supplied.
Figure 2-1 presents the suggested format and contents for the software development/ management plan, in-
cluding several references to sections of this handbook for detailed descriptions. The format is intended as
a guide. Depending on the application environment, a different arrangement of items or the addition of new
material may be appropriate.

EXECUTING THE SOFTWARE DEVELOPMENT/MANAGEMENT PLAN
The plan will be an effective management aid only to the extent that it is followed. The manager must dirmct
and control the execution of the plan by

• Maintaining it
• Measuring progress and performance
• Recognizing danger signals
• Taking corrective action to solve problems

The last two items involve monitoring the project and are covered in Section 6.

2-2

t

SOFTWARE DEVELOPMENT/MANAGEMENT PLAN

Ti tLE PAGE —name of project, dates of this and last issue, and preparers.
LEAD SHEET—date of this issue, phase to which it is updated, list of all subsections and the pages
within the subsections that have been updated since the last issue, and list of all incomploto subsections.
TABLE OF CONTENTS —list of subsection titles and page numbers
1. INTRODUCTION

1.1 Purpose —brief statement of the project's purpose.
1.2 Background —brief description that shows where the software products produced by the proj-

ect fit in the overall system.
1.3 Organization and Responsibilities

1.3.1 Project Personnel —explanation and diagram of how the development tear y, will organize
activities and personnel to carry out the project: types of personnel assigned, report-
Ing relationships, and team members' authorities and responsibilitias (see Section 3 of
this handbook for guidelines on team composition).

1.3.2 Interfacing Groups --list of interfacing groups, points of contact, and group
responsibilities.

2. STATEMENT OF PROBLEM —brief elaboration of the work to be done, the steps (numbered)
necessary to do it, and the relation (if any) to other projects.

3. DEi/ELOPMENT APPROACH —items in this section are produced for each development phase.
3.x (Each Phase) —requirements analysis, preliminary design, detailed design, implementation,

system testing, and acceptance testing.
3.x.1 Technical Approach

3.x.1.1 Assumptions And Constraints —that govern the manner in which the work
for this phase will be performed.

3.x.1.2 Anticipated and Unresolved Problems —that may affect the work in this and
subsequent phases.

3.x.1.3 Major Activitles —list of what will be done in this phase.
3.x.1.4 Methods and Tools---list of development practices and tools that the team

will use and how they will use them (see Reference 2).
3.x.1.5 Products —list of products produced in this phase (see Section 4).

3.x.2 Management Approach
3.x.2.1 Concerns —that the managers feel may affect progress in this or subsequent

phases.
3.x.2.2 Resource Estimates —tabular lists of estimated levels of resources required;

include size estimate (see Section 3).
3.x.2.3 Support Needed— breakdown of type and amount of staff effort, computer

time, and support effort needed for this phase; amounts expended in previous
phases; and totals needed for project completion (see Section 3).

3.x.2.4 Assignments and Schedules —list of work to be done, who will do it, and
when it will be completed.

3.x.2.5 Progress Accounting— methods used to measure and report development
progress in this phase; development data that will be collected and monitored;
measures that will be used to determine progress; and reports that will be pro-
duced (see Section 6 and Reference 3).

Figure 2-1. Software Development/Managernent Plan Contents (1 of 2)

11

2-3

t}	 r&).

U.2.6 Quality Assurance--methods used to ensure the quallty of products from this i
phase.

3.x.2.7 Revlows—reviews (internal and external) conducted In this phase (see Seatfon
%7.

3.x.3 Cottfiguratlori Management Procedures—procedures used to ensure the integrity
of the system configuration: when the area is under control; what documents or code
are under control; how changes are requested; what forms are used; who makes the
changee, etc.

• Repeat Development Approach for Each Phase +

4. SUMMARY OF RESOURCES REQUIRED — high-level summary of resources planned and ex-
pended by phase.

5. MILESTONE CHARTS--development life cycle, delivery of required external interfaces, scheduled
Integration of externally developed software, delivery of required information, delivery of develop-
ment products, and scheduled reviews.

6. ITEMS REQUIRED FROM CUSTOMER—list of data, information, documents, software, hard-
ware, and support to be supplied by the customer and delivery dates.

7. ITEM S DELIVERED TO CUSTOMER—list of data, information, documents, software, and sup-
port to be delivered to the customer and delivery dates.

8. PLAN UPDATE HISTORY—development plan lead sheets from each update indicating which
sections were updated.

Figure 2-1. Software Development/Management Plan Contents (2 of 2)

One useful maintenance activity is to annotate the plan to reflect actual experiences in following the managerial
and technical approaches. The information will help the organization determine which methods were effective
and should be used again. As the project evolves, another maintenance functio^l is to reestimate the size and
effort measures as new indicators become available. Activities such as annotating and reestimating keep the
plan current and provide information for use later in preparing the software development history (Section 4).
When it is effectively maintained, the development plan documents the current state of the software develop-
went effort. By providit2g a uniform characterization of the project, the plan can be invaluable if changes
occur in team leadership.

Significant revisions to the plan should not be considered routine maintenance. Effort should be invested when
the plan is written to ensure that it is realistic, rather than continually modifying the plan so it agrees with
actual decisions or experiences. Major shifts in technical approach or use of methodologies, for example, should
occur only if necessary. Section b discusses development problems that may require revisions to the plan.
By measuring progress, the manager discovers whether the development/management plan is effective or not.
The following performance data should be collected (Reference 3) to help determine whether progress is being
made:

• System size, including number of subsystems, number of developed components, number of reused com-
ponents, and developed lines of code

• Resources, including staff size, staff effort, computer usage, support staff effort
• Schedule, covering phase start and end dates, milestones and dates of deliverables, review dates
• Activity data, i.e., staff time spent on various activities
e Change data, including number of change report forms and number of requirer=ts changes

The data alone are not sufficient for gauging the effectiveness of the plan, but by comparing the data to nominal
values from related applications, some assessment is possible. Section 3 provides guidelines on resources and
staffing that enable some comparison with the actual project data. The use of a project historieo data base,
as explained in Section 5, is another management aid for measuring progress.

2-4

y	 ^

SECTION 3--COST ESTIMATING, SCHEDULING,
AND STAFFING

This section presents methods for managing and estimating the resources required for the software project.
Two of the most critical resources are development staff and time. The software manager is concerned with
how much time will be required to complete the project and what staffing level will be necessary over the
development cycle. Both staff and time are estimated using the procedure discussed in this section. In addi-
tion, project staffing is discussed in greater detail than simply determining the total required effort. Issues
of staff size and composition over the life cycle are considered. Guidelines are also given for estimating some
additional important cost elements such as computer utilization and system documentation. Reference 4 pro-
vides the background and rationale for software cost estimation.

A cautionary note about the cost factors applies throughout this section. The values summarized in Table 1-1
reflect SEL experiences in the flight dynamics environment. Readers of this handbook should a&,ess how well
that summary matches their own software development environment as an indication of the degree of con-
fidence to place in the particular cost values of this section. A prudent plan is to use the values here as a
first approximation and begin collecting data (see Reference 3) to obtain cost factors that are representative
of the reader's environment.

ESTIMATING; DEVELOPMENT COST AND SCHEDULE
An understanding of the expected schedule consumption and effort expenditure in each phase of the life cycle
is useful to managers. Figure 1-1 and Table 3-1 present these distributions as they reflect projects monitored
by the SEL. Because the cost of developing software is often expressed in units of effort, e.g., staff-months,
to avoid the effects of inflation and salary variation, cost and effort will be used interchangeably in this sec-
tion when accounting for the expenditure of staff resources.

}	 Table 3-1. Distribution of Time Schedule and Effort Over Phases

PHASE	 PERCENT OF
TIME SCHEDULE

PERCENT
OF EFFORT

Requirements Analysis 5 6
Preliminary Design 10 8
Detailed Design 15 16
Implementation 40 45
System Testing 20 20
Acceptance Testing 10 u 5

3-1

li

x

NTT

Although It is the moEt uncertain, the initial estimate is, in many ways, the most important. It occurs at such
an early stage (after the requirements definite.: activity) that the temptation is strong to ignore It; to do so
is a mistake, Making the initial estimate has the welcome side C"CUL of leading the manager to consider the
various factors bearing on the size and complexity of the development task. The initial estimate seeds the
estimation process, serving as a reference value with which to compare later estimates. In view of this singular
role, the following steps are suggested for achieving an initial estimate:

• Decompose the requirements as far as possible. The decomposition unit at this point will probably be
the system or subsystem.

a For each decomposition unit, identify similarities with functional units in previously developed systems
and use any historical size data available from these completed systems.

A For decomposition units not strongly related to those of previous projects, use personal experience to
estimate the size of units.

• Form the size estimate (in lines of code) for the entire project by adding the estimates for all the decom-
position units.
From historical data and personal experience, estimate the work rate (in lines of code per staff month).

s Divide the size estimate by the work rette to obtain an estimate of the effcrt in staff months. 	 F

• Apply the uncertainty proportion of 1.0 to the size and effort eqintates to obtain a range of possible values.
After the initial estimate is made, five reestimates (numbered 2 through 6 in Figure 3-1) are prescribed. These
reestimates exhibit a common pattern and are detailed in Table 3-2. They are based on the increasing granularity
in the representation of the system during the life cycle. The uncertainties from Figure 3-1 are repeated in
Table 3-2 because of their importance in transforming the individual estimates into ranges of estimated values.
The estimation factors in Table 3-2 represent average values over a wide range of development projects. The
estimates should be adjusted (before the uncertainty proportion is applied) when the manager identifies cer-
tain aspects of the problem, process, or environment that vary significantly from customary development con-
ditions. For example, any of the following conditions may strongly affect the effort necessary to complete 	 {
the project: coding a new and dissimilar language, development by a completely inexperienced team, or the
use of a new and dissimilar computer system.

LIFE CYCLE REQUIREMENTS REQUIRF-BENTS PRELIMINARY DETAILED 	 SYSTEM ACCEPT-
PHASES	 DEFINITION AND	 ANALYSIS	 DES16N	 DESIGN	 IMPLEMENTATION	 TEST	 ANCE	 MAINTENANCE	 o

SPECIFICATION	 TLS"

T	 r	 T	 ^	 T	 T
ESTIMATES	 I	 2	 3	 a	 5	 5

UNCERTAINTY	 1.00	 0.75	 0.50	 0.30	 0.12	 0.05
(PROPORTION)

i
I

Figure 3.1. Cost Estimation Schedule 	 j

The effects of some of these conditions have been estimated by the SEL. Table 3.3 provides the recommended
percentage adjustment to the effort estimate due to the complexity of the problem. Table 3-4 provides an
adjustment to the effort estimate for the effect of different team experience levels.

3-2

1

9

±j
a

n'

tt

fi

w

!if,

^Y

r1!'

ORIGINAL PAGE GS

OF POOR QUALITY,

Table 3-2. Procedures for Reestimating Size, Cost, and Schedule During Development

LIFE CYCLE
PHASEa DATA REQUIRED SIZE ESTIMATE COST (EFFORT)

ESTIMATE
SCHEDULE
ESTIMATE

UNCERTAINTY
(PROPORTIpN) b

Requirements Number of subsystems Use 76M LOC O per Use 1850 hours Use 45 wb ks per 0.75
Analysis subsystem per subsystente subsystem per

persona

Preliminary Number of rnodulesd Use 125 LOC I per Use 30 hours per Use 0.76 week per 0.50
Design module modulee module per parsone

Detailed Number of new Compute: number Use 0.3 hour per Use 1 week per 0.30
Design modules IN) of developed developed LOC e developed module per

Number of reused modules = N +0.2 R persone
modules (R) Use: developed

LOC =125 x number
of developed
modules

Implementation Current size in LOCc Add 10% to current Add 33% to effort Add 43% to time 0.12
Effort expended to date size (for growth already expended schedule expended

during testing) Ifor effort to (for time to complete)
Time schedule complete)
expended to date

System Effort expended to date Final product size Add 5% to effort Add 11 % — *'me 0.05
Testing has been reached already expended schedule exper led

(for effort to (for time to complete)

L I I
complete)

I I	 I

NOTE: Parameter values are derived from experiences with the SEL software development environment summarized in Table 1 . 1 Ian average
of 85 percent FORTRAN and 15 percent assembler macros).

a At end of phase.

bof size and effort estimates:
Upper limit = (size or effort estimate) x 0.0 + uncertainty).
Lower limit = (size or effort estimate) / (1,0 + uncertainty).

C Line of code: an 80-byte record that can be processed by a compiler or assembler.

dModule: a named subroutine unit that is independently compilable.

eEstimates of total effort (or time); subtract effort (or time) already expended to get effort (or time) to complete.

Table 3-3. Complexity Guideline

PROJECY TYPEa ENVIRONMENT EFFORT
TYPEb MULTIPLIER

Old Old 1.0

Old New 1.4
New Old 1.4
New New 2.3

aApplication, e.g., orbit determination, data base. The project type is old when the develop-
ment team has more than 2 years experience with it,

bComputing environment, e.g„ IBM 4341, VAX-11/780. The environment type is old when
the development team has more than 2 years of experience with it.

3-3

F

ORIGINAL PAGE 6S
OF POOR QUALITY

Table 3 .4. Development Team Experience Guideline

TEAM YEARS OF	
aAPPLICABLE EXPERIENCE

EFFORT MULTIPLIER

10 0.5
8 0.6

6 0.8
4 1.0

2 1.4

1 2.6

aSum of team members' years of applicable experience weighted by a member's
participation on the team.

PROJECT STAFFING
Although the level of staff is provided by the effort estimate, more specific guidelines are available for three
aspects of staffing—team size, staffing pattern, and team composition. Table 3-5 presents guidelines for team
size in terms of the experience of the team leaders. Table 3-6 provides guidelines for the staffing pattern: the
rate at which team members can be added or released (phased in or out) without seriously affecting progress.
Table 3-7 addresses team composition, listing recommended percentages of senior personnel and analysts.
Reference 2 contains background information and additional guidelines on staffing decisions.

Table 3-5. Team Size Guideline

IVIINWAUIYI YEAR
S
 VT EAPERIENC w

..^-- MAXIMUM TEAM
SIZE EXCLUDING
TEAM LEADERS

Project Manager Project Leader

App. Ory. Leader App. Org. Leader

8 6 5 6 4 3 7±2

7 5 3 5 3 1 4.5 t 1.5

6 4 2 4 2 0 2 t 1

aApp. = Applicable experience (requirements/ specification definition, c+.+velopment, maintenance, and operation).
Org.	 = Experience with organization.
Leader = Experience as team leader or manager.

Table 3 .6. Staffing Pattern Guideline

PROJECT LEADER

Schedule Type

DEVELOPMENT TEAM MEMBERS

Lead Time Phase-in Phase -out Minimum Length
Type Increment Increment of Participation

(Weeks)8 (Weeks)L' (Weeks)" (Weeks)

Senior 4 Fast 1 2 6

5 OptimWm 2 3 6
6 Slow 3 4 6

Intermediate 5 Fast 2 3 7
6 Optimum 3 4 7
7 Slow 4 5 7

Junior 6 Fast 3 4 8
7 Optimum 4 5 8
8 Slow 5 6 8

aTime that the project manager and leader need to organize and plan projects before other team members join the project.

bMinimum interval between addition of team members to allow the protect leader to maintain order.
°Minimum interval between departures cf team members to allow assignments to be absorbed by the team and minimize
callback.

3-4

I

ti '

ORIGINAL PAt: T. uq
OF POOR QUL"I

Table 3.7. Team Composition Guideline

PROJECT	 ENVIRONMENT	 PERCENTAGE OF	 PERCENTAGE
I	 TYPEa	 TYPE'	 SENIOR PER:SONNEL b 	O!F ANALYSTSc

Old	 Old	 25-33	 `	 25-33
Old	 New	 j	 33-50	 25-33
New	 Old	 ,	 33-60	 33-50
New	 New	 50-67	 33-50^J

aThe project and environment types are old when the development team has more than 2 years of experience
with them.

bSenlor personnel are those with more than 5 years of experience in development-related activities.
cAnalysts are those personnel who have training and an educational background in problem definition and solu-
tion with either the application (project type) or the computer (environment type).

OTHER SOFTWARE DEVELOPMENT COSTS
Estimates and guidelines are presented for other software cost elements: computer utilization, system documen-
tation, software rehosting, software reuse, and software maintenance.

Cost of Computer Utilization
This cost is expressed in terms of developed lines of code, L (see Table 3-2). The estimate of total hours of
CPU time, H, in an IBM 360/4341 environment is H = 0.009:L. Figure 3-2 shows the expected computer
utilization over the life cycle of the project.

PRELIM- DETAILED	 SYSTEM	 ACCEPTANCE
SIS

LY

DESIGN
AN

NA	
(NARY	 DESIGN	

IMPLEMENTATION	 TESTING	 TESTING^	 i	 ^

	

I	 I	 '

'
w	 ^	 ^	 I	 I	 ,	 I	 I

a	 I	 i	 j	 I	 ^	 I
° 	 ^	 I	 I	 I	 ^	 ^	 I

1

3
a	 I	 I	 I	 i	 I	 I
Lu	 I	 I	 I	 I	 I	 I
a	 I	 I	 i	 I	 I	 I
0	 I	 I	 I	 I	 I	 I

i
^	

Z	
I	 I	 I	 I	 I	 I

W	 I	 I	 I	 I	 I	 I
v	 I	 I	 I	 (I	 I
^	 I	 I	 I	 I	 i
a	 I	 I	 I	 AVERAGE WEEKLY COMPUTER USE-- 100..,^
N	 I	 I	 I	 I	 ^	 I

^	 I	 I	 I	 I	 I	 I
ce	 I	 I	 I	 IUJ
	 I	 I	 I	 I	 I

°'	 i	 I	 I	 j	 I	 I0	 I	 I	 I	 I	 I	 I
v	 I	 I	 I	 I	 I

	

I	 1	 I	 I	 I

	

I	 I	 I	 I	 I

25	 50	 75

PERCENT OF DEVELOPMENT SCHEDULE

Figure 3 .2. Typical Computer Utilization Profile

3-5

.

i

Cost of System Documentation
Documentation cost is included in the software development cost estimates of Table 3-2, For a separate
documentation task, the expected size of the documentation is given by P = 0.04L, where P is pages of documen-
tation and L is developed lines of code (Table 3-2). A cost rate of 4 staff hours per page is used to produce
an estimate of the total cost of system documentation.

Cost of Rehosting Software
Rehosting means modifying existing software to operate on a new computer system. Testing will thus require

+	 a high percentage of effort. Table 3-8 provides the cost of rehosting high-level language software as a percen-
tage of the original development cost in staff hours.

Table 3-8. Cost of Rehosting Software

SYSTEMS RELATIVE COSTa TESTING EFFORTS b NEW CODEoRELATIONSHIP

Compatibled 15-21 67-70 0-3
Similare 22-32 61-66 4-14
Dissimilarf 35-50 55-60 15-32

a Percent of original development cost.

bPercent of total rehosting cost.

°Percent of code that must be newly developed or extensively modified.

dSystems designed to be compatible (i.e., plug compatible), e.g., IBM S/360 and 4341. 	 3

eSimilar; Some key architectural characteristics (e.g., word size) are shared and some are different (e.g., IBM S/360
and DEC VAX 11/780).

fDissimilar; Differences In most charartmIstics of architecture and organization (e.g., IBM S/360 and PDP 11/70).

Cost of Reusing Software
Reusable modules should be identified during the design stage. As shown in Table 3-9, the estimated cost 	 -
to reuse a module depends on the extent of the changes.

Table 3-9. Cost of Reusing Software

PERCENT OF MODULE'S
MODULE CLASSIFICATION CODE MODIFIED OR RELATIVE COSTa

ADDED

New 100 100
Extensively Modified >25 100
Slightly Modified 1-25 20
Old 0 20

a Cost as a percent of the cost to develop a new module.

Cost of Software Maintenance
Software maintenance refers to two types of activities occurring after the software is delivered—correcting
defects detected during operational use and modifying the behavior of the software, e.g., by adding new
capabilities
Expected maintenance costs vary widely, depending on the quality of the delivered software and the stability
of the operational environment. From limited SEL experiences, the annual cost of error corrections and essential
modifications ranges from 10 to 35 percent of the original development cost (in staff hours). This includes
retesting, regenerating, and recertifying the software. New documentation is usually not produced. Little ad-
ditional development (expansion of capabilities) is done with software maintained in the SEL environment.

I

3-6

C
G

3i

I	 Lt

z.^

4

4rt ,

IL

3>

-,

4-1

11 U

k
P

o,QI i r:.A Q ^` ..	
1 .

^r^-era

SECTION 4--KEY DOCUMENTS AND DELIVERABLES

Documents and deliverables provide an ongoing system description and serve as key indicators of progress.
They are a central concern of software managers because they mark the transitions between life cycle phases.
The following documents and deliverables are of specific interest to the software manager:

+ Software development/management plan • System description
• Requirements analysis summary report 	 • Software development history
• Preliminary design report 	 • System delivery tape--Software product and support-

Detailed design document	 ing files plus any tools developed in connection with
• Test plans	 the project
• User's guide

The documents and deliverables associated with a software development project are keyed to life cycle phases.
Figure 4-1 shows the phases when they should be completed. In some instances, preliminary versions are
prepared, followed by updates. For any point in the life cycle, the software manager can determine what
documents and deliverables should be in preparation. This section presents the recommended contents for
the documents and deliverables as well as management guidelines for evaluating completed documents.

AT END
OF

PHASE
BELOW

—.

DOCUMENTS AND DELIVERABLES

REQUIREMENTS SOFTWARE. REQUIREMENTS ANALYSIS
ANALYSIS DEVELOPMENT SUMMARY

MANAGEMENT REPORT
PLAN

PRELIMINARY ;UPDATE) PRELIMINARY DESIGN
DESIGN REPORT

DETAILED DETAILED
DESIGN UPDATE, DESIGN

I DOCUMENT

IMPLEMENTATION UPDA rEI USER'S GUIDE SYSTEM DESCRIPTION SY STEM ACCTPTTNCE
RELEASE

CODE AND SUPPORTING
DRAFTI ^ORAFTI

PLAN PLAN TEST PLANS
1 L^^^j AND RESULTS

SYSTEM Up^ TE, uPOATEI ^UP^ TEI RESULTS UPDATE

ACCEPTANCE FINAL,
1

^FINAL^ ^FINAO RESULTS
SOFTWARE

DEVELOPMENT
I

FINAL SYSTEM DELIVERYTEST HISTORY TAPE

Figure 4-1. Key Documents and Deliverables by Phase

SUGGESTED CONTENTS OF DOCUMENTS AND DELIVERABLES
For each document arid deliverable, a suggested format and contents are given (see Figures 4-2 though 4-9), with
the exception of the software development/management plan, which was covered separately in Section 2. The ac-
tual contents of the documents may vary from the outlines presented here. Specific features of the application en-
vironment may lead the manager to exercise judgment in selecting the most appropriate material. The effectiveness
of a particular document may be enhanced if some of the suggested contents are omitted and different material
included. This allowance for flexib ; ' ty should be understood when examining Figures 4-2 through 4-9.

,a

I

I

r

REQUIREMENTS ANALYSIS SUMMARY REPORT
This report is the primary product of the requirements analysis phase, It summarizes the results of the re.
quirements analysis and establishes a basis for beginning preliminary design. There is considerable overlap
with the information required as part of the more comprehensive software development/managemFnt plan
(see Section 2). The suggested contents are as follows:

1. Introduction, including purpose and background of project
a, Overall system concepts
b. Discussion and high-level diagrams of the system show!ng hardware Interfaces, external data

Interfaces, and data flow
c. Discussion and high-level diagrams of operating scenarios with interfaces and data flow

2. System constraints
a. Hardware availability—execution, storage, peripherals
b. Operating system limitations
c. Support software limitations

3. Development assumptions

4. Areas of concern and TBD roquiremenvi
a. List of concerns and problem areas, i.e., deterrents to progress
b. List of TBD requirements and an assessment of their effect on system size, required effort,

cost, and schedule
c. List of priority areas

S. Analysis of basic and derived requirements for the system, including level of importance
of key issues and completeness
a. Stimulus for input—frequency, volume, coordinates, units, and timing
b. Processing—functionality, accuracy, timing, and error handling
c. Stimulus for output—frequency, volume, coordinates, units, and timing

6. Analysis of basic and derived requirements for subsystems or major functions, including
level of importance of key issues and completeness. (Same as for item 5 except for subsystems
or major functions.)

7. Data interfaces for each interface:
a. Description, including name, function, frequency, coordinates, units, and computer type,

length, and representation
b. Format

(1)Organization, e.g., physical, sequential
(2)Transfer medium, e.g., 9-track tape, printout
(3)Layout of frames, samples, records, blocks, and/or transmissions
(4)Storage requirements

3. Summary of existing code that may be reused

9. Estimates of system size, required efforto cost, and schedule

Figure 4 .2. Requirements Analysis Summary Report Contents

a

e

4-2

t

1

4-3

ft

a$
(y

PRELIMINARY DESIGN REPORT

This report is the primary product of the preliminary design phase. It presents the functional descrip-
tion of the system and forms the basis for the detailed design document. Several items 0a, 1b, 1c,
4, 5) represent updates of similar material from the requirements analysis summary report. The sug-
gested contents are as follows:

1. Introduction, including purpose and background of project
a. Overall system concepts
b. Discussion and high-level diagrams of system showing hardware interfaces, external data

interfaces, and data flow
c. Discussion and high-level diagrams of operating scenarios with Interfaces and data flow
d. Design status

(1) List of constraints and their effects on design
(2) List of assumptions and possible effects on design if they are wrong
(3) List of concerns and problem areas, i.e., deterrents to progress
(4) List of TBD requirements and an assessment of their effect on system size, required

effort, cost, and schedule
(5) List of priority areas

e. Critique of alternative designs
2. Design description for each subsystem or major functional breakdown:

a. Discussion and high-level diagrams of subsystem, Including interfaces, data flow, and com-
munications for each processing mode

b. High-level description of input and output
c. High-level description of processing keyed to operator-specified Input and actions in terms

of points of control, functions performed, and results obtained (both normal and abnormal,.
i.e., error processing and recovery)

d. Functional baseline diagrams (tree charts) expanded to two levels below the subsystem driver
e. Prologs (comments to describe the module's purpose, operation, calling sequence arguments,

external references, etc.) and Program Design Language (PDL) for each module through the
first level below subsystem driver

3. Resource .requirements— discussion, high-level diagrams, and tables for system and subsystems
a. Hardware
b. Data definitions, i.e., data groupings and names
c. Peripheral space considerations—data storage and printout
d. Memory considerations—program storage, array storage, and data set buffers

4. Data interfaces for each internal and external interface:
a. Description, including name, function, frequency, coordinates, units, and computer type,

length, and representation
b. Format

(1)Organization, e.g., physical sequential
(2)Transfer medium, e.g., tape
(3) Layout of frames, samples, records, blocks, and/or transmissions
(4)Storage requirements

5. Summary of existing code that may be reused

Figure 4-3. Preliminary Design Report Contents

s

ear

i

i

DETAILED DESIGN DOCUMENT

This documert Is the primary product of the detailed design phase, it Is most easily completed by up-
dating similar material from the preliminary design report and adding greater detail in Item 2. The sug-
gested contents are as follows;

1. Introduction, including purpose and background of project

a. Overall system concepts
b. Discussion and high-level diagrams of system showing hardware interfaces, external data

interfaces, and data flow
c. Discussion and high-level diagrams of operating scenarios with interfaces and data flow
d. Design status

(1) List of constraints and their effects on design
(2)List of assumptions and possible effects on design if they are wrong
(3)List of concerns and problem aman, i.e., deterrents to progress
(4)List of TBD requirements and an assessment of their effect on system dze, required

effort, cost, and schedulo
(5) List of priority areas

2. Design description for each subsystem or major functional breakdowns

a. Overall subsystem capability
b. Discussion and high-level diagrams of subsystem, Including interfaces, data flow, and com-

munications for each processing mods
c. High-level description of Input and output
d. Detailed description of processing keyed to operator-specified input and actions in terms of

points of control, functions performed, and results obtained (both normal and abnormal, i.e.,
error processing and recovery)

e Functional baseline diagrams (tree charts) expanded to the subroutine level showing Interfaces,
data flow, interactive control, interactive input and output, and hardcopy output

f. Restrictions in each processing mode
q. Internal storage requirements, i.e., description of arrays, their size, their data capacity in all

processing modes, and implied limitations of processing
h. Detailed input and output specifications

(1) Processing control parameters, e.g., NAMEt.ISTs
(2)Facsimiles of graphic displays for interactive graphic systems
(3)Facsimiles of hardcopy output

I. List of numbered error messages with description of system's and user's actions
j. Description of COMMON areas
k. Prologs and PDL for each subroutine (normally kept in a separate document because of size)

3. Resource requirements
4. Data interfaces	 Updated from description in preliminary design report
S. Summary of existing code

Figure 4-4. Detailed Design Document Contents

VJ

4-4

J
i

w r

I

G

4-5

,

TEST PLANS

BUILD/RELEASE TEST PLAN
•	 Prepared by the development team during the implementation phase
•	 Designed to test the functional capability of each build and release (functional subsets of the

N
complete software system) identified during the detailed design phase

j	 •	 Executed during the Implementation phase as soon as coding and unit testing of each build and
I	 release are complete

SYSTEM TEST PLAN
•	 Prepared by the development team during Implementation of the last release
•	 Designed to verify the system's end-to-end processing capability as specified in the requirements

document
•	 Executed during the system testing phase

ACCEPTANCE TEST PLAN
•	 Prepared by the acceptance test team during the later stages of the implementation phase, based

on information from the functional specifications and requirements document
' •	 Designed to verify the system's acceptability to the analysts who will be its users

•	 Executed during the acceptances testing phase

TEST PLAN OUTLINE
` 1. Introduction, including purpose, type and level of testing, and schedule

` 2. Test description (normally the length need not exceed 1 to 2 pages) for each test
p a.	 Purpose of test, i.e., specific capabilities or requirements tested

b. Detailed specification of input
J c. Required environment, e.g., data sets required, computer hardware necessary

d. Operational procedure, i.e., how to do the test
e.	 Detailed specification of output, i.e., the expected results
f.	 Criteria for determining whether or not the test results are acceptable
g. Section for discussion of results, i.e., for explaining deviations from expected results and Iden-

tifying the cause of the deviation or for justifying the deviation

Figure 4.5. Test flan Contents

4

0..i

USER'S GUIDE
Formalization of the .user's guide is started during the implementation phosa, using the design docu-
ment as a starting po int. (Most modern approaches to software development suggest that the user's
guide be completed by the end of the design phase, but experiments with this approach have yet to
prove it advantageous in to flight dynamics environment.) Items 1, 2, and 4 represent updated material
from the detailed design document, although some rewriting is expected to make It more accessible
to the user. A typed draft is completed by the end of system testing. The user's guide is completed
by the end of acceptance testing. The suggested contents are as follows:

1. Introduction, including purpose and background
a. Overall system concepts
b. Discussion and high-level diagrams of system showing hardware interfaces, external dad in-

terfaces, and data flow
c. Discussion and high-level diagrams of operating scenarios with interfaces and data flow

2. Description for each subsystem or major functional breakdown:
a. Overall subsystem capability
b. Assumptions and restrictions to processing
o. Discussion and high-level diagrams of subsystems, including interfaces, data flow, and com-

munications for each processing mode
d, High-level description of input and output
e. Detailed description of processing keyed to operator-specified input and actions In terms of

points of control, functions performed, and results obtained (both normal and abnormal, Le.,
error processing and recovery)

3. Requirements for execution
a. Resources—discussion, high-level diagrams, and tables for system and subsystems

(1) Hardware
(2) Data definitions, Le., da ta groupings and names
(3) Peripheral space considerations—data storage and printout
(4) Memory considerations—program storage, array storage, and data set buffers
(6) Timing considerations

(a)CPU time In terms of samples and cycles processed
(b) I/O time in terms of data sets used and type of processing
(c) Wall-clock time in terms of samples and cycles proce^?sed

h. Run information—control statements for various processing ;nodes
c. Control parameter information--by subs ystem, detailed description of all control parameters

(e.g., NAMEUSTs), including name, computer type, length, and representation, and descrip-
tion of parameter with valid values, default value, units, and relationship to other parameters

4. Detailed description of input and output by system and subsystem
a. Facsimiles of graphic displays for interactive graphic systems in the order in which they ap-

pear for each processing mode
b. Facsimiles of hardcopy output in the order in which it Is produced, annotated to show what

parameters control it
c. List of numbered messages with explanation of system's and user's actions annotated to show

subroutines that issue the message

Figure 4-6. User's Guide Contents

4-6

,y

SYSTEM DESCRIPTION

Formalization of the system description begins at system testing, using the design document as a star-
ing point. It is completed by the end of acceptance testing. The suggested contents are as follows. 	 {

1. Introduction, including purpose and background of project
a, Ovorali system capabilitiesR

I	 f	 showing	 ware interfacesexternal data in-b. Discussion and high-level diagrams o system	 ho	 n	 hard	 en	 g	 8	 Y	 g
tarfaces, and data flow

c. Discussion and high-level diagrams of operating scenarios with Interfaces and data flow
2. Description for each subsystem or major functional breakdown;

a. Overall subsystem capability
f b. Assumptions about and restrictions to processing 	 t

c. Discussion and high-level diagrams of subsystem, includ ing Interfaces, data flow, and com-
munications for each processing mode

4 d. High-level description of Input and output
e. Detailed baseline diagram at subroutine level showing interfaces, data flow, interactive con- 	 j

trol, interactive input and output, including messages, and hardcopy output
3. Rciquirements for creation

w	 I a. Resources--discussion, high-level diagrams, and tables for system and subsystems
^°	 1 (1) Hardware

l
° (2) Support data sets

(3) Peripheral space considerations--source code storage, scratch space, and printout
iI (4) Memory considers tions .--program generation storago and data set buffers

j (5) Timing considerations
(a) CPU time in terms of compile, build, and execute benchmark test
(b) 1/0 time in terms of the steps to create the system

b. Creation information—control statements for various steps
;. Program structure information—control statements, for overlaying or loading 	

f4. Detailed description of input and output by step—source code libraries for system and sub-
.	 ` systems, object code libraries, execution code libraries, and auxiliary libraries, e.g., support tables

ii. Internal storage requirements —description of arrays, their size, their data capacity in all proc-
essing modes, and implied limitations of prc- ^ssing

6. Data Interfaces for each internal and external interface;
a. Description, including name, function, frequency, coordinates, units, computer type, length,

and representation
b. Format—organization, (e.g., indexed), transfer medium, (e.g., drum), layout of frames,

(samples, records, blocks, and/or transmissions), and storage requirements
f 7. Description of COMMON areas

V	 ! 8. Prologs and PDL for each subroutine (usually produced in a separate volume)
9. Alphabetical list of subroutines from support data sets, including, for each subroutine, a

reference to the support data set from which it comes and a description of the subroutine's function

Figure 4-7. System Description Contents

4-7

SOFrWA1RE DEVELOPMENT HISTORY

The soft ;are development history is completed within 3 months of software acceptance. Much of
the material is available Ift ,= the software development/ management plan (c .a Section 2), which has
been annotated throughout the life cycle. The suggested contents are as fellows:

1. Project description and background
a. Problem statement and list of key requirements—origin of requirements, purpose of system,

customer of system, and development organization
b. Key dates (actuals)—availability of functional specifications and requirements, development

phase dates (start and finish), event dates, e.g., SRR, PDR, CDR, ORR
c. Key products produced--all software and documents
d. System characteristics

(1)Total, new, and reused source lines of code (with and without comments) of product
(2)Total, new, and reused number of modules of product
(3)Total, managerial, programmer, and support service hours required for development

2. Development history
a. Original and updated estimates of system size, required effort, schedule, and cost
b. Organizational structure and key personnel
c. Specified approaches, e.g., methods, practices, standards, and tools
d. Unique approaches, e.g., independent verification and validation team, prototyping
e. Target development machine and programming languages
f. Specl3l problems encountered
g. Build/release history
h. Test history
i. Configuration control start dates for requirements, design, and code

3. Project assessment
a. Substantiated major strengths of the development process and product
b. Substantiated major weaknesses of the development process and product
c, Major problem areas
d. Development plan timeliness and usefulness
e. Adherence to development plan
f. Adherence to standards and practices
g, Design timeliness, completeness, and quality
h. Code timeliness, completeness, and quality
1. Test timeliness,, completeness, and quality
j. Personnel adequacy (number and quality)

4. Functional specifications and requirements —origin and timeliness; completeness and ade-
quacy for design; change history and stability; and clarity (i.e., were there misinterpretations?)

5. Summary
a. List of shortcomings of the development process and product
b. List of successful aspects of the development process and product
c. List of things that should be done differently for future projacts
d. List of things that should be done similarly for future projects
e. List of the major causes of errors

6. References —list of relevant background documents and reports

Figure 4-8. Software Development History Contents

,7

4-8

R

4

SYSTEM DELIVERY TAPE

The system delivery tape contains the software product and certain supporting files. A desirable feature
of the tape Is that it be complete and self-documenting, so that no instruction sheets or documentation
need to be consulted to generate the system. This objective can be met by a "bootstrapping" procedure:
A label is attached to the tape itself, listing the Job control language (JCL) commands necessary to ob-
tain a printout of the first file on the tape. The first file then contains all of the information required
to unload the remaining files on the tape and generate the system. The specific; contents of a system
delivery tape will vary among installations, and managers should consult standards or guidelines for their
cumputer faciiity to determine the required contents. Typical contents are as follows:
FILE 1--NAPE DESCRIPTION AND INSTALLATION GUIDE

1. Name of the system
2. Brien abstract of the system's function
3. List of files on the tape, Including

a. File number
b. File came
c. Brief description of file contents

4. Operating environment
a. Hardware requirements—specific models of processors and peripherals required
b. Software requirements—specific versions of system software required

S. System unloading procedure —sequence of steps and specific commands required to unload
tihe remaining files from the tape to prepare system for operational use

6. References —list of supporting documentation, such as system description and user's guide
FILES 2 THROUGH N—SOFTWARE SYSTEM AND SUPPORTING DATA SETS; ORGANIZED
INTO THREE GROUPS:

1. Files to generate an executable system load module
a. Primary source code (e.g., FORTRAN or assembler); code from more than one source language

should not be in the same file
b. JCL to compile and link-edit the source code
c. Subroutine and macro libraries

2. Files to execute the software system
a. Load module library
b. Support libraries
c. JCL to execute the system
d. Permanent input and output data . sets (e.g., NAMFLIST data), including any initialization

routines required
3. Files to test the software syster+e

a. JCL to execute the software system for each test
b. Permanent input dr'e sets (e.g., NAMELIST data) for each test
c. Input data for each test
d. Output data for each test; required if output is in the form of data sets instead of printouts

Figure 4-9. System Delivery Tape Contents

,;

7

4-9

1

GUIDELINES FOR EVALUATING COMPLETED DOCUMENTS
The software manager will be critically reviewing completed documents. The general guidelines presented here
involve checking the degree to which five basic attributes of a successful document are present in the docu-
ment under review;
Accuracy--Is the document correct? Are there obvious mistakes? Are assumptions about resources and en-
vironment valid? Is there evidence of a lack of understanding of important aspects ;if the problem or process?
Clarity---Is the document expressed in a form that is accessible and understandable? Are tables and diagrams
used where possible instead of text?
Completeness--is the right information included, considering the purpose of the document? Have any necesary
items been omitted? When the document reflects continuing development from a previous document, does
It contain all the elements from the earlier document?
Consistency—Do passages in the document contradict other passages in the same document?
Level of detall--Do the contents reflect a level of detail appropriate to the purpose of the document? Is more
elaboration needed in a specific area?
Using the suggested contents as a guide, the software manager can look for specific items in each key document.
The following questions can be used to anaivze the document for the existence and quality of essential features.

Requirements Analysis Summary Report
Are operating scenarios realistic?
Has the effect of TBD requirements been underestimated?
Is the assessment o/' hardware availability realistic?
Have recommended methods been used to estimate size, effort, cost, and schedule?
Are there additional sources of reused code?
Are resources sufficient?
Are all interfaces known?

Preliminary Design Report
Have all functional requirements been allocated to subsystems?
Are all interfaces understood?
Is there a rationale for the chosen design?
Is the subsystem partitioning sensible?
Will the nature of the remaining TBD requirements impede progress?

Detailed Design Document
Is the implementation plan reasonable in light of the resources?
Are baseline diagrams provided to the subroutine level?

g	 Are all external files described in content and format (to the byte level)?
Are all TBD requirements resolved?

j	 If the design is followed, will the system meet its requirements?
Is there evidence of information-hiding, i.e., localizing the data usage and access?
Is the coupling between modules low?
Are the modules cohesive?
Are build/release capabilities traceable to requirements?

Test Plans
Do the tests describe expected results?
Are the tests repeatable, i.e., do the test specifications adequately describe the setup and environment so
that two different people would produce the same tests from the test descriptions?

t Flow well do the tests cover the range of capabilities?
Are there explicit criteria for determining whether test results are acceptable?
Is the schedule reasonable in light of test resources?

4-10

.	 c

U

,o

'i

1

z

User's Guide
Will it be understandable to the users?
1s It organized so that it can serve different user populations simultaneously?
Are examples provided?
Is Input described in sufficient detail?
Are error messages and recovery explained?

System Description
Is the document structured to accommodate both those who want only a high-level view of the system
and those who seek a detailed view?
Is the scope of the system clear?

Are the relationships to other systems explained?

Software Development History
Is there an update list that shows when estimates of system size, effort, schedule, and cost were made? 	 k
Have all of the problem areas been discussed?

a
P

L'

1

N

1

f

4-11

y

.r - ^.^.	

,1n

SECTION 5--KEY MANAGEMENT AIDS

An aid or tool in the software environment is broadly considered to be any instrument that supports the soft-
ware production effort. This section focuses on management aids in contrast to development aids such as
code analyzers or preprocessors. Reference 2 describes such development aids.
Within the domain of management aids, further classification is possible. For example, the software develop-
ment/management plan (Section 2), the cost estimation procedure (Section 3), and the project notebook
(Reference 2) can be classified as management aids even though they are not automated. More prevalent is
the position taken in this handbook--that aids or tools i,efer to automated instruments.
This section summarizes the basic capabilities of three software tools to support configuration management,
project cost control, and comparison with past projects.

CONFIGURATION MANAGEMENT TOOLS
Configuration management refers to all the activities related to controlling the contents of a software system:
monitoring the status of system components, preserving the integrity of released and developing versions of
a system, and controlling the effects of changes throughout the system. Configuration management tools pro-
vide a central storage location for information about milestones, documentation, changes, tests, and discrepan-
cies. Schedule data can be maintained at the detailed level of subsystems and modules. One example of such
a tool is the Configuration Analysis Tool, described in detail in References 5 and 6.

PROJECT COST CONTROL
Automated tools are available to aid management by providing integrated support for project planning, scheduling,
and cost control. A key feature of such tools is their ability to quantify the amount of work performed over time.
Using various "earned-value" methods, equivalent units of work are awarded as progress is made on each work
unit in a project. This measure of work accomplished is compared to actual costs and budgeted costs throughout
the life cycle to provide a foundation for monitoring and controlling the project. The Performance Management

i"	 System, described in Reference 7, is an example of this type of integrated management aid.
u

PROJECT HISTORIES DATA BASE
A data base of project histories is a valuable resource for the software manager. Although collecting and main-
taining the data is a significant undertaking, there are benefits to be realized by creating an "organizational
memory" that records key characteristics of software development in a particular environment. The costs
and benefits are further discussed in References 3 and 8, respectively.

Flexible retrieval capability from such an automated data base can greatly assist the manager in monitoring
the project. The guidelines in Section 6 concentrate on indicators that, by themselves, signal some project

5-1

Î Dt

a

1

a!
	

+Y

ORIGINAL PACE W
OF POOR QUALITY

characteristic. The added ability to refer to a baseline of data on related projects enhances the manager's capacity
to assess performance and recognize problems.
Figure 5-1 suggests the possibilities for useful comparison when the project histories data base is available.
Information on completed projects helps the manager initiate and revise the plans and estimates.

9

Figure 5 .1. Role of Project Histories Data Base in Management Control

When actual performance measures become available on the current project, the manager can compare these
values with those for related projects in the data base.
The three comparisons in Figure 5-1 can be viewed collectively as one component of a Feedback and control
system. The comparisons lead to revisions in development plans. To execute the revised plans, the manager
makes changes in the development process, which result in adjusted measures for the next round of comparisons.
Some key items to extract from the data base are presented below. In each case, the data would correspond
to the same point in the life cycle as the current project to facilitate comparison.

Key Project History Data
Resource expenditures

Percentage of total effort expended thus far
Distribution of effort among programmers, managers, and support staff
Composition of team by staff level
History of planned versus actual staffing
Percentage of calendar time consumed thus far
Level of computer utilization

System size
Percentage of total software developed thus far
Growth rate

Staff activity

Distribution among design, code, and test activity
An example of a management aid in this area is the data base reporting software operating on the SEL data
base. The software produces listings and summary reports of the contents of data base files. Reference 9
describes the use of this reporting software.

5-2

^ ^ 1

.- _._.._

SECTION 6-KEY INDICATORS, WARNING SIGNALS,
AND CORRECTIVE MEASURES

Because the active pace of the development process can easily give the appearance of progress, the project
manager needs a list of characteristics that have been shown to be valuable as indicators of the true project
condition. This section presents guidelines for effectively monitoring and controlling the software project.
Lists of key indicators and probe points arc presented. Some corrective measures for regaining control are
suggested, should the indicators reveal problem areas.

KEY INDICATORS OF PROJECT STATUS
To assist the manager in monitoring the project, two groups of indicators are provided. The first consists
of general features that are not associated with a particular life cycle phase. The second group is organized
so that, at any phase in the life cycle, the software manager can use the list to find effective probe points.

General Indicators of Status Throughout the Project
Frequency of schedule/milestone changes

Frequency and magnitude of changes should be decreasing throughout the development process.
Consistency in organizational structure compared to original plans

Minor adjustments to the organization of the project team are expected, but major changes indicate
problems.

Fluctuation in project staff level and system size estimates
Fluctuations should be within uncertainty limits that become narrower as project development evolves.

Ease of access to information on project status, schedules, and plans
Rapid responses to questions about project status and schedules reflect well on the quality of the software
development plan.

Number of overtime hours required or planned to attain certain objectives
Relying on overtime hours may indicate problems with the staff's qualifications or the team leadership.

Level of detail understood and controlled by the project manager and project leader
Managers' responses to questions about development progress indicate the degree of control exercised by
leadership.

Discrepancies in staff level and workload
Major differences between planned workload and actual workload may indicate lack of understanding.

Discrepancies in computer usage
A decrease or slow start in using the computer may indicate incomplete design.

w^

6-1

1

E

I	 ")

Critical Items and Probe Points in Each Phase of the Life Cycle
Requirements Analysis Phase

Number and effect of TBD requirements
Number of requirements changes
Number of requirements questions and answers
Completeness of requirement summary report
System requirements review

Preliminary Design Phase
Number and effect of TBD requirements
Number of requirements and design changes	 a
Number of interfaces per subsystem
Completion of all preliminary design formalisms
Preliminary design review

Detailed Design Phase
Number and effect of TBD requirements
Number of requirements and design changes
Estimated number of lines of code per budgeted staff day
Completion of all detailed design formalisms
Build/release schedule and capabilities
Critical design review

Implementation Phase
Number and effect of TBD requirements
Number of requirements and design changes
Estimated and actual productivity rates
Growth rate of number of lines of code and executable lines of code
Error rate
Number of changes to code
Number of identified discrepancies and number of resolved discrepancies
Detailed completion statistics for each module in system
Review of test results

System Testing Phase
Actual size of system versus planned size
Actual prMuctivity rates versus planned rates
Error rate
Number of changes to code
Number of identified discrepancies and number of resolved discrepancies
Review of test results

Acceptance Testing Phase
Actual size of system versus planned size
Actual productivity rates versus planned rates
Error rate
Number of changes to code
Number of identified discrepancies and number of resolved discrepancies
Review of test results

WARNING SIGNALS AND CORRECTIVE MEASURES
Two key aspects of monitoring and controlling a project are to

• Recognize projects that are in trouble (i.e., those in danger of not being completed on time)
o Take corrective action to move the project back on a successful course

The following lists of warning signals and corrective measures reflect many of the common problems iden-
tified by the SEL.

6-2	 -

i

6-3

i^

Problems With System Definition

Requirement or design Is Inconsistent or confusing
Difficulties become compounded if development is permitted to continue. Stop development activity and
resolve Inconsistency or confusion in consultation with the using organization. Negotiate a reduction in
the scope of the system by defining an understandable subset of the original system.

Requirement or design is Incomplete
Although the obvious correction is to resolve the incompleteness, this is not always possible. In such cases,
development must continue despite the incompleteness. Assess the effect of missing requirements. Deter-
mine whether relatively safe assumptions about the missing requirements can be made. Before starting
the next phase, prepare contingency plans to account for incorrect assumptions.

Problems With Development Plan

Capabilities originally planned for one time period are moved to a later tittle period
If a corresponding move of later capabilities to an earlier time period has not been made, the danger is that
the development team will not be able to handle the additional work in the later period. Obtain justification
for the change with detailed schedule information for the the new and old plans. If the shift of capabilities

- is extensive, stop development activity until the development/management plan ran be revised, then proceed.
Change or decrease in planned use of methods or procedures occurs

The methods or procedures had some use or expected benefit or they would not have been included in the develop-
ment plan. Obtain justification for the change, to include showing how the expected benefit from the planned
use of the method will be realized in light of the change.

d
Requests are made to delete requirements

The motivation for the request must be determined; Are the resources inadequate? Are the requirements not
understood? Based on the reasons for the deletion request, either revise the development plan to show new
assignments, schedule, and effort or consult with customer to resolve a misunderstanding about requirements.

Problems With System Growth

Actual number of subroutines designed is fewer than estimated at a particular point in the detailed design phase
Lack of design growth may be due to poor direction from the team leader, inexperienced staff, or changing
rcgWrements. Determine the cause of the slow growth. Based on the cause, either replace junior personnel with
senior personnel, decrease staff size to a manageable level, or decrease the scope of the system.

Actual number of .subroutine units tested and integrated is fewer than those estimated at a particular point in the
implementation phase

a Lack of code growth may be due to poor direction from the team leader, inexperienced staff, changing re-
quirements, or incomplete design. Determine the cause of the slow growth. Based on the cause, either replace
junior personnel with senior personnel, stop staff growth, or hold changes and complete implementation of a
build first.

Some aspect of a supposedly completed development is missing
The necessary level of completeness may not be understood, especially among junior staff. Revise status-reporting

lj procedure to provide necessary level of detail and to accommodate accuracy.

Problems With Development Schedules

Continual schedule slippage
Staff ability may have been misjudged or the staff needs firmer direction. Replace junior-level personnel with
senior-level personnel, but only if rapid phase-in is possible. Decrease the scope of the system.

"miracle Finish': software completed on time but testing phase was significantly compressed
Testing may not have been as complete or as thorough as necessary. Review test plans and results closely; schedule
additional testing if indicated.

4-

rr

Problems With System Configuration
More than one person controls the configuration

Sharing of configuration contro! responsibilities between the team leader and the manager can lead to wasted
effort and the use of wrong versions for testing. Select one person who will ,control the configuration, review
proposed changes, and issue documentation updates about the system.

"Corrected" errors reappear
The corrected version may not have been used because more than one person controlled the configuration, or
the staff was not aware of the ripple effect of other changes that should have been made when the original
error was corrected, Consolidate configuration control responsibility in one person. Assign more senior staff
to analyze the effect of error corrections and other changes.

Basic Set of Corrective Measures

Some consistent themes appear in the lists of corrective measures, regardless of problem area. These recommenda-
tions constitute the SEL°s basic approach to regaining control of the project when danger signals arise,

• Stop current activities and review/complete predecessor or problem activity
• Decrease staff to manageable level
• Replace junior with senior personnel
• Increase and tighten management procedures
• Increase number of intermediate deliverables
• Decrease scope of work and define a manageable, doable thread of the system
• Audit project with independent personnel and act on their findings

V

I

6-G
r

x

SECTION 7---REVIEWS AND AUDITS

Reviews and audits are methods for assessing the condition of the project. Although both techniques address
quality assurance by examining the plans, methods, and intermediate products associated with the develop-
ment process, they are conducted for different reasons. Reviews are routinely scheduled as part of the develop-
ment process, and they mark key phase transitions in the software life cycle. Audits are generally not predeter-
mined, but are conducted when needed to evaluate the project's status.

REVIEWS
Reviews are part of the development process, designed to provide regularly scheduled monitoring of project
status. The following four questions can serve as general guidelines, regardless of the type of review:

Is the development plan being followed?
Is the project making satisfactory progress?
Are there indications of future problems?
Is the team prepared to proceed with the next phase of development?

Reviews may be characterized in various ways, such as formality or timing. An informal review may be held
to brief higher level managers on the current state of the project. A formal review generally involves a more
detailed presentation and discussion and follows a prescribed agenda. Some reviews may resemble progress
reports delivered at fixed intervals, e.g., weekly or monthly.
In the SEL environment, four formal reviews, which are scheduled at key transition points between life cycle
phases, are recommended (see Figure 7-1)—system requirements review (SRR),preliminary design review (PDR),
critical design review (CDR), and, operational readiness review (ORR).

SRR	 PDR	 CDR1	 1	 1 ORR

LIFE CYCLE
PHASES

REQUIREMENTS
DEFINTION ANDI REQUIREMENTS

ANALYSIS
PRELIMINARY

DESIGN
DETAILED

DESIGN IMPLEMENTATION SYSTEM
TEST

ACCEPT-
ANCE MAINTENANCE

SPEC FICA'i ION TEST

Figure 7-1. Scheduling of Formal Reviews
The remainder of this section examines the four reviews in order of occurrence and describes the format of
the review (presenters, participants, and agenda), key issues to be addressed at the review (in addition to the
general questions above), and hardeopy material (outline and suggested contents). The hardcopy material will
contain some of the same information found in the documents described in Section 4. For example, when
preparing the hardcopy material for the preliminary design review, some of the contents from the completed

' preliminary design report can be used. The manager should also keep in mind that, as with the documents
in Section 4, there is some flexibility in selecting the most appropriate information to include in the hardcopy
material. The contents suggested in this section are intended as a guideline.

7-1

SYSTEM REQUIREMENTS REVIEW
SRR Format
Presenters--requirements definition team
Participants

• Development team representatives
• Quality assurance representatives
• User representatives
• Customer representatives

Time--after functional specifications completed and before functional design started
Agenda--selective presentation of information from the hardcopy material, omitting details (e.g., in hems 9
and 11) that are more effectively communicated in hardcopy form and highlighting critical issues (e.g., item

j	 16 on TBD Items)
Hardeopy distribution--minimum of 5 days before SRR

Key Issues To Be Addressed
Have all elements of the hardcopy material been completed?
What is the effect of the TBD items?
What timetable has been established for resolving TBD items?
Now satisfactory are the responses to questions raised at the SRR?
Is all external Input and output identified?	 T

Are constraints on ti„ te, inemory, and accuracy understood?
Is the project feasible, given the constraints on and assumptions ahout available resources?

4

Is the foundation adequate to begin prelimtra: y design?
Does the functional specifications and requirements document (FSRD) provide a basis for defining accep-
tance, tests?

SRR Hardeopy Material
An outline and suggested contents of the SRR hardcopy material are presented in Figure 7-2. For items 13
through 17, the software development/management plan (Figure 2-1) may serve as the hardcopy material.

i

7-2

7-3^a

._ 0 - om- r « er r

ti

r	
^^

1. Introduction—purpose of system, background of project, and outline of review material
2. Roquiremornts summary—review of top-level (basic) requirements developed to form the func•

tional specifications
a. Background of requirements—overview of project characteristics and major events
b. Derivation of requirements—identification of input from project office, support organization,

and system engineering organization used to formulate the requirements—support Instrumen-
tation requirements document (SIRD), memorandums of information (MOTs), and memoran•
dums of understanding (MOUs)

c. Relationship of requirements to level of support provided—typical support, critical support, and
special or contingency support

d. Organizations that provide system and support input and receive system output
e. Data availability—frequency, volume, and format
f. Facilities--target computing hardware and environment characteristics
g. Requirements for computer storage, graphics, failure/recovery, operator interaction, system

error recovery, and diagnostic output
h. Requirements for support and test software—data simulators, test programs, and utilities
1. Overview of FSRD—its evolution, including draft dates and reviews, and outline of contents

3. Analysis overviews—Analysis approach, degree of innovation required in analysis, special studies,
and results

4. Environmental considerations—special computing capabilities, e.g., graphics; operating system
limitations; computer facility operating procedures and policies; support software limitations; data
base constraints; resource limitations; etc.

5. Performance requirements—system processing speed, system response time, system failure
recovery time, and output data availability

6. interface requirements—summary of human, special-purpose hardware, and automated system
interfaces, including references to interface agreement documents (IADs) and Interface control
documents (ICDs)

7. Derived system requirements—list of those requirements not explicity called out in the re-
quirements document but representing constraints, limitations, or implicat',uns that must be satisfied
to achieve the explicitly st raed requirements

8. Operational requiremenis—high-level diagrams of operating scenarios showing intended system
behavior

9. Utility, support, and teat programs—list of auxiliary software required to support development,
e.g., data simulators, special test programs, software tools, etc.

10. Reusable scf.tware summary—identification of existing software components that satisfy specific
system functional specifications exactly or that will satisfy them after specified modifications

11. Data set definitions—for interfaces to the system
12. Functional specifications—high-level data flow diagrams showing input, transforming processes,

and output
13. Requirements management approach

a. Personnel assignments
b. Description of required documents
c. Specifications/requirements change control procedures
d. System enhancement/ maintenance procedures

14. Personnel organization and interfaces
15. Testing requirements
16. issues, TBD items, and problems—a characterization of all those items that affect plans for

preliminary design and the state of the requirements, an assessment of their effect on progress,
and a course of action to resolve them, including required effort, schedule, and cost

17. Milestones and suggested development schedule

Figure 7-2. SRR Hardeopy Material

0

.,...mow -..r -	 ,.nr....	 ^.. r. r..... r..

4

PRELIMINARY DESIGN REVIEW

PDR Format
Presenters--software development team
Participants

• Requirements definition team
• Quality assurance representatives from both groups
• Customer interfaces for both groups

Time—after functional design completed and before detailed design started
F

Agenda---selective presentation of Information from the hardcopy material, omitting details (e.g., in Items
5 and 8) that are more effectively communicated in hardcopy form and highlighting critical Issues (e.g., Items
3, 4, 10, and 16)
Hardeopy distribt ► tton--minimum of 5 days before PAR

t

Key Issues To Be Addressed
Have alternative design approaches been examined?
Are all requirements traceable to subsystems in thefunctiotai design?
Is the subsystem partitioning sensible in view of the required processing?
Are all interface descriptions complete at both the system and subsystem level?
Are the layouts for all external data sets completely specified?
Is the error handling and recovery strategy comprehensive?	 EI
Is the esthnate of resources realistic?
is the schedule reasonable?
Has the effect of any remaining TBD requirements been assessed?
Has the design been elaborated In baseline diagrams to a sufficient level of detail? (Reference 2
presents information on level of detail.)
Does the design facilitate testing?

PDR Hardeopy Material
An outline and suggested contents of the PDR hardcopy material are presented in Figure 7 .3. The informa-
tion in items 13 throu31i 17 is to be available to all reviewers but may be in the form of the software develop-
ment/management plan. The information may be identical to that presented at the SRR, but modifications
will most likely have occurred.

a
t

a

1. Introduction —purpose of the system and outline of review material
a. Requirements summary—origin and format of requirements and a list of major system com-

panents, including the top-level (basic) requirements they satisfy
b. Operating scenario requirements—data handling, execution frequency, etc.
c. Environment considerations—target computing machine, operating system, etc.
d. Software legacy (past experiences and history)—cost, schedule, and design experience

2. Design overview
a. Requirements summary—list cross-referencing top-level (basic) requ;; aments to major system

components presented at SRR
b. Performance requirements—cross-reference list of performance requirements that led to parti-

tioning of system Into major components
c. Design drivers—primary factors that Influenced the development team's design, e.g., operating

scenarios, environmental considerations, and software legacy
3. High-level diagrams of operating scenarios —input stimulus, processing, output, and inter-

faces to show how requirements are met
4. High-level diagrams of system structure— internal and external data, hardware interfaces, etc.
G. Critique of alternative desires or approaches
6. Major software components —each subsystem, major functional breakdown (in each processing mode)

a. High-level diagrams of subsystems—internal and external data, hardware Interfaces, etc.
b. High-level input and output specifications, including frequency and v";I..me
c. Functional baseline diagrams (tree charts) expanded to two levels below the subsystem driver,

showing interfaces, data flow, and how requirements are met
d. Facsimiles of 1/0 graphics displays (screens) and p rinter and plotter output
a. Error processing and recovery strategy

7. Hardware interfaces
8. Internal data sets —format, file structure, storage requirements
9. Summary of existing code that may be reused

10. Design team assessment
a. List of constraints and their effects on design
b, List of assumptions and possible effects on design if they are wrong
c. List of cor,Gfarns and problem areas, i.e., deterrents to progress
d. List of TBD requirements and an assessment of their effect on system size, required effort,

cost, and schedule
e. List of priority areas

11. Estimates of system size, required effort, cost, schedule, and staffing plan
12. Resource allocation and external support

a. Summary of how system functions will be performed—by hardware, firmware, software, or human
b. Rationale for selecting computers, e.g., speed, memory, itorage, and reliability of mainframes,

minicomputers, or microcomputers
c. Summary of what the development team will do and what they need to Jo it, e.g,, analysis

support, librarian support, computer access and information, support documentation, inter-
face access, integration support

13. Development management approach
14. Personnel organization and intarfaces
15. Testing strategy
11 Issues, TBD items, and problems
17. Mlle ,3tones and schedules

Figure 7.3. PDR Hardeopy Material

7-5

CRITICAL DESIGN REVIEW

CDR Format
resenters—software development team.

Participants
• Requirements definition team
• Quality assurance representatives from both groups
• Customer interfaces for both groups

Time---after detailed design completed and before implementation started
Agenda--selective presentation of information fro.n the hardcopy material, omitting details (e.g., it) items
5f, 5g, and 7) that are more effectively communicated in hardcopy form and highlighting critical issues (e.g.,
items 3, 4, 9, and 16)
Hardeopy distribution—minimum of 5 days before CDR

Key Issues To Be A ldres.4^wu

Are all baseline diagrams complete to the subroutine level?
Are all Interfaces—external and Internal—completely specified at the subroutine level?
Is there PDL or equivalent representation for each subroutine?
Will an implementation of this design provide all the required functions?
Does the build/release schedule provide for early testing of end-to-end system capabilities?

C L% iis^rdevpy liiai^''r iai

An outline and suggested contents of the CDR hardcopy material are presented in Figure 7-4. The informa-
tion in items 13 through 17 is to be available to all reviewers but may be in the form of the software develop-
ment/management plan. The information may be identical to that presented at the PDR, but modifications
will most likely have occurred.

t

7-6

,. ..rs .^..A ^ .r114r	 a .r. .+-. ^a	 .+ a	
_..___

L^

R

r,

1 .

A

1.

a

I

9

:e

1. Introduction—purpose of the ; ,.stem and outline of review material (updated from PDR material)

2. Design overview (updated from PDR material)

3. High-level diagrams of operating scenarios (updated from PDR material)

4. High-level diagrams of system structure (updated from PDR material)

S. Major software components—for each subsystem or major functional breakdown (in each
processing mode):

a— e. (Updated from corresponding PDR material)
f. Internal storage requirements: description of arrays, their size, their data capacity in all

processing modes, and implied limitations of processing
g. Detailed input and output specifications

(1) Processing control parameters (NAMELISTs, etc,)
(2) Facsimiles of 1/0 graphics displays (screens) and printer and plotter output

6. Hardware interfaces (updated from PDR material)

7. Internal data sets (updated from PDR material)

8. Summary of existing code that may be reused (updated from PDR material)

8. Design team assessment (updated from PDR material)

10. Implementation strategy and traceability

a. Build/release overview and schedule, indicating establishment of internal and external data in-
terfaces for both connection tests and data flow tests and showing delivery of interfaces and
externally developed software

b. Build/release capabilities—list of capabilities implemented in each build/release by subsystem
c. Requirements traceability—cross-reference list of build/release capabilities to basic and deriv-

ed software requirements

11. Estimates of system size, required effort, cost, and schedule (updated from PDR material)

12. Resource allocation and external support (updated from PDR material)
13. Development management plan
14. Personnel organization and interfaces
15. Testing strategy
16. Issues, TBD items, and problems
17. Milestones and schedules

Figure 7-4. CDR Hardcopy Material

7-7

t

9

OPERATIONAL READINESS REVIEW

ORR Format
Presenter.—operations and support team and development team
Participants

• user acceptance test team
• Requirements definition, software development, and software maintenance representatives
• Quality assurance representatives from all groups
• Customer Interfaces for all groups

Time--after acceptance testing completed and 90 day;, before operations start
?	 Agenda—selective presentation of information from the hardcopy material, omitting details that are more

effectively communicated in hardcopy form and highlighting critical issues (e.g., items 7 and 8)
Hardcopy distribution—minimum of 5 days before ORR

1
Key Issues To Be Addressed

What is the status of required system documentation?
What is the status of external interface agreements?
Were the methods used in acceptance testing adequate for verifying that all
requirements have been met?
What is the status of the operations and support plan?

4,	 Is there sufficient access to necessary support hardware and software?
Are configuration control procedures established?
What contingency plans to provide operational support have been addressed?

ORR Hardcopy Material
An outline and suggested contents of the CDP, hardcopy material are presented in Figure 7-5.

I

f

a

7-8

f

E

1. Introduction— purpose of the system and outline of review material
2. System requirements summary—review of top-level (basic) requirements

a. Background of requirements—overview of project characteristics, major events, and support
b. Derived requirements (updated from SRR)
c. Relationship of requirements to support provided—typical, critical, and special or contingency support
d. Operational support scenarios
e. Relationship of requirements matrix, e.g., of top-level requirements to operational support scenarios
f. Organizational interfaces, e.g., that provide system and support input and receive system output
g. Data availability for the operating scenarios—frequency, volume, and format
h. Facilities—computing hardware, environment characteristics, communications protocols, etc.
1. General system considerations—high-level description of requirements for computer storage, graphics,

and failure/ recovery; operator interaction; system error recovery and diagnostic output, etc.
j. Support and test software considerations—high-level description of requirements for data

simulators, test programs, and support utilities
3. Summary and status of IADs— status of all interface documents with external organizations
4. Support system overview

a. Major software components—purpose, general characteristics, and operating scenarios sup-
ported by programs and subsystems

b. Testing philosophy
c. Requirements verification philosophy—demonstration of methods used to ensure that the soft-

ware satisfies all system requirements; matrix showing relation between requirements and tests
d. Testing and performance evaluation results—summary of system integration and acceptance

test results; evaluation of system performance measured against performance requirements
e. System software and documentation status—summary of completed work packages and list

of incomplete work packages with scheduled completion dates and explanation of delays
5. Status of operations and support plan

a. Organizational interfaces—diagrams and tables indicating organizational interfaces, points of
contact, and responsibilities; data flow and medium (forms, tapes, voice, log)

b. Data availability—nominal schedule of input and output data by -type, format, frequency, volume,
response time, turnaround time

c. Facilities—nominal schedule of access to computers, support and special-purpose hardware, operating
systems, and support software for normal, critical, emergency, and contingency operations

d. Operating scenarios—top-level procedures, processing timelines, and estimated resources
required

e. Documentation of operations procedures—operations and support handbooks and update
procedures

6. System management a>"an
a. Configuration control procedures—explanation of step-by-step procedures for maintaining

system integrity, recovering from loss, fixing faults, and enhancing system
b. Enhancement/ maintenance procedures—initiation, forms, reviews, approval, and authorization
c. Reporting/testing evaluation procedures—forms, reviews, approval, authorization, distribution
d. System performance evaluation procedures—for ongoing evaluation

7. Issues, TBD items, and problems—a characterization of all those items affecting normal opera-
tions as perceived by the developers and users; an assessment of their effect on operations; and
a course of action to resolve them, including required effort, schedule, and cost

8. Cc, " ingency plans —a priority list of items that could prevent normal operations, including the
steps necessary to work around the problems, the defined levels of operations during the
workarounds, and the procedures to attempt to regain normal operations

9. Milestones and timeline of events— diagrams, tables, and scripts of events; operating scenarios;
maintenance; enhancement; review,; training

Figure 7-5. ORR Hardcopy Material

7-9

L

N

AUDITS
The purpose of an audit is to provide an independent assessment of the software project—Its condition, its
problems, and its likelihood of reaching successful comp:etion. The audit may be prompted by indications
of problems or by lack of progress, or it may be fulfilling a routine contractual requirement.
An individual or, preferably, a group outside the development team is charged with conducting this examina-
tion. It is essential for the audit team to obtain a clear written statement of the specific objective of the audit
at the start.
When preparing to conduct an audit, several key questions must be addressed:

What is the scope of the audit? Is the entire development effort being eramined, or only some par-
ticular component of the project?
What is the final form the audit should take—a presentation, a written report, or both?
To whom will the results be presented?
What is the timetable for completing the audit?
What staff and support resources will be available for the audit work?
Have the development team and its management been informed that an audit Is scheduled?
Have specific individuals o;l the development team been identified as principal contactz for the audit
group?
What constraints exist on the work of the audit team regarding access to documents or individuals?
Where are the sources for documentation related to the project (requirements statements, plans, etc.)?
Are there specific auditing standards or guidelines that must be observed?

The answers to these questions will form the basis for planning the audit task. Sources of information include
personal interviews with managers, team members, and individuals who interact with the development team.
Documentation must be reviewed to understand the origin of the requirements and the plans and intermediate 	 it
products of the development team.
Four steps are involved in conducting the audit of a software development project:

• Determine the current status of the project
• Determine whether the development process is under control
• Identify key items that are endangering successful completion
• Identify specific actions to put the project onto a successful course

7-10

1

4
1

r1

AUDIT STEP NO. 1 - DETERMINE THE CURRENT STATUS OF THE PROJECT

Audit Team's Checklist:

• Consult Table 3-1 and project histories data base (set
Section 5) for comparison data on similar projects:
— Percentage of effort and calendar time consu ed

thus far
— Percentage of effort by type of activity
— Percentage of code developed thus far

• Refer to the software development/management plan
for the project:
— What activities should be current
— How should it be staffed
— What intermediate products should have been

delivered
— What reviews or milestones should have occurred

• From interviews and documentation, identify the
following:
— The current phase	 — Milestones reached
— Activity levels 	 — Project budget
— Staff composition	 — Actual expenditures
— Documents delivered	 — Results of reviews

Audit Question:

Given the size and nature of the problem,
where should the project be?

According to the development/management
plan, where should the project be?

Where does the project actually stand now?

AUDIT STEP NO. 2 -- DETERMINE WHETHER THE DEVELOPMENT PROCESS

^t
IS UNDER CONTROL

Audit Question:

Is the problem ►vell understood and stable?

Is the development/management plan being
followed?

Is adequate direction being provided?

^p

^p

Audit Team's Checklist:

• Refer to project documents for significance of TBD
items
— Requirements analysis summary report (see

Section 4)
— Hardcopy material from SRR (see Section 7)

• Interview analysts who attended SRR to determine
adequacy of responses to questions raised

• From technical manager, identify the number and ex-
tent of specification modifications received by the
development team

• Examine the development/management plan
• Compare the plan to actual development to determine

whether
— The schedule is being followed
— Milestones have been met
— The plan is being annotated (see Section 2)
— Actual and planned staffing levels agree

• Interview team leaders, technical managers, and ad-
ministrative managers to determine whether there is
agreement on
— Project scope and objectives
— Expectations and responsibilities at each level
— Methods for measuring progress

7-11

....................	 .	 i

Are resources adequate?

AUDIT STEP NO. 3 -- IDENTIFY KEY ITEMS THAT ARE ENDANGERING
SUCCESSFUL COMPLETION

Audit Question:
	

Audit Team's Checklist:
	 n

A-1 1-

4

Is the development process adequate?

Are the organization and planning adequate?

• Time—determine if lack of schedule time (regardless
of staff) is a concern by comparison to past projects
(Section 5) and by time estimates (Section 3)

• Staff—compare actual with desired staffing
characteristics
— Level of staff effort (Section 3)
--- Team size (Table 3-5)
— Staffing pattern ('fable 3-6)
— Composition (Table 3-7)

• Computer—compare actual with expected utilization
(Figure 3-2); from interviews and computer facility
schedules, determine degree of access to computer and
level of service provided

• Support—compare actual level of support services to
typical levels

• Determine whether technical standards and guidelines
are being followed for design, coding, and testing

• Determine whether available tools and methodologies
are being used

• From interviews, determine the procedures for repor-
ting and resolving problems

• From interviews, assess the reporting relationships
that exist, the team morale and turnover, and the pat-
tern of delegating work

• Assess the quality, completeness, and practicality of
the software development/management plan (see
Section 2)

• From interviews and documentation, identify extent
of contingency planning

AUDIT STEP NO. 4 - IDENTIFY SPECIFIC ACTIONS TO PUT THE PROJECT
ON A SUCCESSFUL COURSE

• Recommended actions must be based on results of audit steps 1, 2, and 3

• For general problem of inadequate progress, some options are as follows

— Stop development; generate a realistic plan before resuming

— Replace junior personnel with senior staff

— Increase visibility by improving identification and review of intermediate products

7-12

u

a
t..

!t

SECTION 8--TESTING AND CERTIFICATION

Both testing and certification are approaches to ensuring quality in the delivered software. Testing identifies
defects so the software can be repaired before it is released, Certification subjects the product and process
to independent inspection and evaluation,

TESTING
A summary of essential management guidelines on software testing is presented below. The observations about
the planning and control of testing are derived from SEL experience. For comprehensive presentations of
the art and science of testing, References 10, 11, and 12 may be consulted.
Realize that testing is important— thirty percent of the life-cycle effort in the flight dynamics environment
Apply adequate resources

• Time—thirty percent of the time schedule
• Staff—experienced, well-trained in defect detection
• Computer—peak use in testing phases (see Figure 3-2)

Plan for it early—as part of the software developmnent/management plan 	 i
Plan for it explicitly —using formatted test plans (see Section 4)	 i
Test continually during the life cycle with four major types of testing (Reference 2) —unit, build/release, system
Integration, and acceptance
Prepare for testing—use testability as a criterion for evaluating requirements statements, designs, and
build/release plans
Apply testing aids (Reference 2)

• Decision tables and test summary tables
• Test library

Monitor testing costs (Reference 3)—collect data on
• Cost of diagnosis—finding the defect
• Cost of repair—making all the necessary corrections to .ode and documentation

Measure testing progress
• Compare testing costs and number of defects with past projects
• Record defect detection rate as testing effort is applied

i
CERTIFICATION
Broadly defined, certification is a statement attesting to something. For example, an individual may be charged
with certifying that

• Specific test cases were run	 4
• Coding standards were followed
• All contractual items have been delivered
• Configuration management procedures have been followed
• Code agrees with PDL

I q

8-1

8-2

os

r	
ti%
	 Y

Although there is considerable diversity In what is being certified, there are common aspects as well. Certification
is a binary decision—either the materials or activities are certified or they are not. It is performed by individuals
who can be objective about their certification assignment. This objectivity is a key reason for Introducing certifica-
tion into the software development process. Certification contributes to quality assurance by providing an Indepen-
dent check on development. Confidence In the final software product is enhanced If both the process and product
are ccrtitl,°d. Essential management guidelines for certification are summarized below.
Determine the objective of the certification, e.g., to ensure that

• Design, code, or documentation is correct
• Standards, procedures, or guidelines are being followed
• System performance meets operational requirements

Define entry criteria —what materials must be submitted for certification?
• Establish procedures for obtaining documents or code that will be required
• Introduce data collection forms, if needed, to capture required Information about the development process

Define exit criteria— certification is a binary decision. Flow will submitted materials be evaluated to make
the certification decision?
Specify the certification procedure, document It, and follow it
More detailed recommendations depend on the object of certification. For example, in certifying intermediate
products like designs, test plans, or unit code, the materials submitted for certification and the evaluation
criteria will vary. Figure 8-1 shows the general guidelines applied to an example unit code certification.

1. Certification Objectives:
a. Inspect the code for consistency with its design, as specified in its prolog and PDL
b. Check for conformance with standards and conventions regarding source code, prolog, and PDL
c. Identify visible weaknesses in the code and unit testing strategy early so that defects can be

repaired at the local unit level
d. Encourage programmers to plan unit testing and to complete unit code by adding prolog and PDL

2. Entry Criteria —the following materials must be submitted:
a. Source code listing, complete with prolog, PDL, and comments
b. List of test cases or test summary table (Reference 12)
c. Code certification form, containing author's name, date submitted for certification, module name,

build/release/subsystem game, and test environment (names of calling units, test files, stub
units—i.e., called units implemented as procedure stubs to facilitate testing)

3. Exit Criteria —some questions will be specific to the coding language used. The following are more
general questions, typically used to evaluate submitted materials and decide on certification:
a. Do the code, prolog, and PDL adhere to all prevailing standards and conventions?
b. Are all necessary elements of the prolog complete, e.g., are all data elements described?
c. Is the code consistent with its design, as presented in its prolog and PDL?
d. Does the code appear to be correct for test cases that can be verified by inspection?
e. Is all debug code clearly identified?
f. Are all stubs and test files identified?
g. Do test cases appear adequate, based on the PDL?

4. Certification Procedure— recommended steps for the certification:
a. Meet with development team leader to establish position of unit code certification in develop-

ment process; all code must pass through certification before the system test and integration phase
b. Issue written descriptions of entry criteria, with examples of the required form for submitted materials
c. Design a unit code certification checklist, based on exit criteria, to record evaluation outcome
d. Document the procedure for obtaining materials, completing the certification checklist, and

presenting results to the development team
e. Implement the procedure; retain certification results for later sharing with development team

to identify areas for improvement

Figure 8-1. Example of Unit Code Certification

A V

d

fl

W

I`

!t

i

u

}

8

GLOSSARY

ATR	 Assistant Technical Representative

CDR	 Critical Design Review

CPU	 Central Processing Unit

FSRD	 Functional Specifications and Requirements Document

IAD Interface Agreement Document

ICD Interface Control Document

I/O Input/output

LOC lines of code

MOl Memorandum of Information

MOU Memorandum of Understanding

ORR Operational Readiness Review

PDL Program Design Language (pseudocode)

PDR Preliminary Design Review

SEL Software Engineering Laboratory

SIRD Support Instrumentation Requirements Document

SRR System Requirements Review

TBD to be determined

e

G-1

i
I

l

r

REFERENCES

1. Software Engineering Laboratory, SEL-81 . 104, The Software Engineering Laboratory, D. N. Card et al.,
February 1982

2. —, SEL-81-205, Recommended Approach to Software Development, F. E. McGarry, G. Page, S. Esl-

f	
inger, et al., April 1983

t1	 3. —, SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, and F. E. McGarry, August 1982

4. --, SEL-83.001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, etF	
al., February 1984

5. --, SEL-81-007, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker et al.,
February 1981

6. —, SEL-80-104, Configuration Analysts Tool (CAT) System Description and User's Guide (Revision 1),
W. J. Decker and W. Taylor, December 1982

i

7. Depaitment of Defense, Instruction 7000.2: Performance Management for Selected Acquhitions, June 10, 1977

8. F. E. McGarry, "What Have We Learned in 6 Years?", Proceedings of the Seventh Annual Software
Engineering Workshop, SEL-82-007, December 1982

9. Software Engineering Laboratory, SEL-82-003, Software Engineering Laboratory (SEL) Data Base Report-
ing Software User's Guide and System Description, P. Lo, September 1982

10. G. J. Myers, The Art of Software Testing. New York: John Wiley & Sons, 1979

11. T. J. McCabe, Tutorial-Structured Testing. New York: Computer Societies Press, 1983

12. W. C. Hetzel, ed., Program Test Methods. Englewood Cliffs, N.J.: Prentice-Hall, 1973

o

I

it

R-1

^w	 ,

f

e

BIBLIOGRAPHY SDP SEL LITERATURE

The technical papers, memorandums, and documents listed In this bibliography are organized into two groups.
The first group Is composed of documents Issued by the Software Engineering Laboratory (SEL) during its
research and development activities. The second group includes materials that were published elsewhere but
pertain to SEL activities.

s
SEL-ORIGINATED DOCUMENTS
SEL -76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory, V. R. Basill, Nt. V. Zelkowitz, F. E. McGarry, et al.,
'.i	 May 1977

f	 SEL-77.002, Proceedings From the Second Summer Software Engineering Workshop, September 1977
ro

SEL-77.003, Structured FORTRAN Preprocessor (SPORT), B. Chu and D. S. Wilson, September 1977
SEL-77 .004, GSFC NA VPAK Design Specifications Languages Study, P. A. Scheffer and C. E. Velez,

October 1977
SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design and A'lodule Descriptions, E. M. O'Neill,

S. R. Waligora, and C. E. Goorevich, February 1978
m

SEL-78.002, FORTRAN Static Source Code Analyzer (SAP) User's Guide, E. M. O'Neill, S. R. Waligora,
and C. E. Goorevich, February 1978 (Superseded)

SEL-78 . 102, FORTRANStatic Source Code Analyzer Program (SAP) User's Guide (Revision 1), W. J. Decker
'	 and W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NA VPAK Software Design, K. Tasaki and F. E. McGarry, June 1978
SEL-78 .004, Structured FORTRAN Preprocessor (SPORT) PDP•11170 User's Guide, D. S. Wilson and

B. Chu, September 1978
SEL-78-005, Proceedings From the Third Sumner Software Engineering Workshop, September 1978
SEL-78 .006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer and

C. E. Velez, November 1978
SEL-78 .007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978
SEL-79-001, S.A,1PL-D Data Base Reference X[anual, Nl. V. Zelkowitz, July 1979
SEL-79-002, The Software Engineering Laboratory; Relationship Equations, K. Freburger and V. R. Basil!,

May 1979
SEL-79 .003, Common Software Alodule Repository (CSMR) System Description and User's Guide,

C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79.004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the Goddard
Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich,
A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth .Summer Softtivare Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for Code 380 Configuration Analysis Tool (CAT),
F. K. Banks, A. L. Green, and C. E. Goorevich, February 1930

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (XIEDL-R) System Evaluation,
W. J. Decker and C. E. Goorevich, May 1980

r _	 SEL-80-003, Multimission Alodular Spacecraft Ground Support Softtivare System (MAdSIOSSS) State-of-the-
Art Computer Systeins/Compatibility Study, T. Welden, Nt. McClellan, and P. Liebertz,

-	 May 1980

-	 SEL-80.004, System Description and User's Guide for Code 580 Configuration Anal ysis Tool (CAT),
F. K. Banks, W. J. Decker, J. G. Garrahan, et al., October 1980 (Superceded)

SEL-80-104, Configuration Analysis Tool (CAT) System Description and User's Guide (Revision 1), W. Decker
and W. Taylor, December 1982

SEL-80.005, A Study of the Musa Reliability ATodel, A. M. Miller, November 1980

B-1

a► ^

a

9

SEL-80.006, Proceedings Front the Fifth Annual Software Engineering Workshop, November 1980

SEL-80.007, An Appraisal of Selected Cost/Resource Estimation hlodelsfor Software Systems, J. F. Cook
and F. E. McGarry, December 1980

SEL-81 .001, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., September 1981
(Superseded)

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

SEL-81 .002, Software Engineering Laboratory (SEL) Data Base Organization and User's Guide,
D. C. Wyckoff, G. Page, and F. E. McGarry, September 1981 (Superseded)

SEL-81 . 102, Software Engineering Laboratory (SEL) Data Base Organization and User's Guide Revision 1,
P. Lo and D. Wyckoff, July 1983

SEL-81 .003, Data Base Maintenance ,System (DBA ybI) User's Guide and System Description, D. N. Card,
x D. C. Wyckoff, and G. Page, September 1981
t	

S.EL-81.103, Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) User's Guide
and System Description, P. Lo and D. Card, July 1983 (Superseded)

SEL-81 .004, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., September
1981 (Superseded)

SEL-81 . 104, The Software Engineering Laboratory, D, N. Card, F, E. McGarry, G. Page, et al., February
1982

SEL-81 .005, Standard Approach to Software Development, V. E. Church, F. E. McGarry, G. Page, et al.,
September 1981 (Superseded)

SEL-81 . 105, Recommended Approach to Software Development, S. Eslinger, F. Z. McGarry, and G. Page,
May 1982 (Superseded)

SEL-81-205, Recommended Approach to Software Development, F. E. McGarry, G. Page, S. Eslinger, et al.,
April 1983

SEL-81 .006, Software Engineering Laboratory (SEL) Document Library (DOC.1.1 9) System Description and
User's Guide, W, Taylor and W. J. Decker, December 1981

SEL-81-007, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker, E. J. Smith,
A. L. been, et al., February 1981 (Superseded)

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker, W. A. Taylor,
and E. J. Smith, February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook and E. Edwards,
February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase I Evaluation, W. J. Decker
and F. E. McGarry, March 1981

SEL-81-010, Performance and Evaluation of an Independent Software Verification and Integration Process,
G. Page and F. E. McGarry, May 1981 (Superseded)

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for Flight
Dynamics, G. Page and F. McGarry, December 1983

SEL-81-011, Evaktating Software Development by Analysis of Change Data, D. M. Weiss, November 1981
SEL-81-012, The Rayleigh Curve As a Model for Effort Distribution Over the Life of Medium Scale Soft-

ware Systems, G. O. Picasso, December 1981
SEL-81-013, Proceedings From the Sixth Annual Software Engineering Workshop, December 1981
SEL-81-014, Automated Collection of Software Engineering Data in the Software Engin=eering Laboratory

(SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981
SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card, and

F. E. McGarry, September 1982, vols. 1 and 2

B-2

A

f)

OA

SEL-82.002, FORTRANStatle Source Code Analyzer Program (SAP) System Description, W. A. Taylor and
W. J. Decker, August 1982

SEL-82 .003, Software Engineering Laboratory (SEL) Data Base Reporting Software User's Guide and System 	
6

Description, P. Lo, September 1982
SEL-82-004, Collected Software Engineering Papers; Vohrme 1, July 1982

"s SEL-82.005, Glossary of Software Engineering Laboratory Terms, 	 M. G, Rohleder, December 1982
(Superseded)

t SEL-82.105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, F. E. McGarry, and
M. G. Rohleder, October 1983

SEL-82-006, Annotated Bibliography of Software Engineering Laboratory (SEL) Literature, D. N. Card,
November 1982 (Superseded)

SEL-82-106, Annotated Bibliography of Software Engineering Laboratory Literature, 	 D. N. Card,
T. A. Babst, and F. E. McGarry, November 1983

SEL-82-007, Proceedings From the Seventh Annual ,Software Engineering Workshop, December 1982 r
SEL-82-008, Evaluating Software Development by Analysis of Changes. The Data From the Software Engineer-

' ing Laboratory, V. R. Basili and D. M. Weiss, December 1982
SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al.,

February 1984
°. SEL .83-002, Measures and Metricsfor Software Deveiopment, D. N. Card, F. E. McGarry; G. Page, et al.,

" March 1984	
f

w SEL-83-003, Collected Software Engineering Papers; Volume .R, November 1983
i SEL-83-004, SEL Data Base Rctrieval System (DARES) User's Guide, T. A. Babst and W. J. Decker,

November 1983.
F

SEL-83-005, SEL Data Base Retrieval System (DARES) System Description, P. Lo and W. J. Decker,
a November 1983,

SF.L-83-006, Monitoring Software Development Through Dynamic Variables, C. W. Doerflinger, November
ap 1983

SEL -83-007, Proceedings From the Eighth, Annual ,Software Engineering Workshop, November 1983
SEL-84-001, Manager's Handbookfor Software Development, W. Agresti, F. E. McGarry, D. N. Card, ct al.,

I
April 1984

B-3

c

f.

Dt

SEL -RELATED LITERATURE

Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program Transform-
ation and Programming Environments. New York: Springer-Verlag, 1984 (also appears in SEL-83 .003, Col-
lected Software Engineering Papers. Volume II, November 1983)

Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource Expenditures," Pro-
ceedings of the Fifth International Conference on Software Engineering. New York: Computer Societies Press,
1981 (also appears in SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982)

Banks, F. K., "Configuration Analysis Tool (CAT) Design," Comput-r Sciences Corporation, Technical
Memorandum, March 1980

Basili, V. R., "Models and Metrics for Software Management and Engineering," ASMEA,,vances In Com-
puter Technology, January 1980, vol. 1 (also appears in SEL-82-004, Collected Software Engineering Papers:
Volume I, July 1982)

Basili, V. R., "SEL Relationships for Programming Measurement and Estimation," University of Maryland,
Tr,r.hnical Memorandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New York: Com-
puter Societies Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and Resource Estima-
tion Problems?", Journal of Systems and Software, February 1981, vol. 2, no. 1 (also appears in SEL-82.004,
Collected Software Engineering Papers: volume I, July 1982)

Basili, V. R., and K. Freburger, "Programming Measurement and Esn'oation in the Software Engineering
Laboratory,," Journal of Systems and Software, February 1981, vol. 2, no. 1 (also appears in SEL-82-004,
Collected Software Engineering Papers: Volume 1, July 1982)
Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical Investigation," Com-
munications of the ACM, January 1984, vol. 27, no. 1 (also appears in SEL-83-003, Collected Software
Engineering Papers. Volume II, November 1983)

Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engineering
Laboratory," Proceedings of theACMSIGMETRICS Symposium/ Workshop: Quality Metrics, March 1981
(also appears in SEL-82-004, Collected Software Engineering Papers: Volume I, July 1982)

Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across FORTRAN Proj-
ects," IEEE Transactions on Software Engineering, November 1983 (also appears in SEL-83-003, Collected
Software Engineering Papers: Volume 11, November 1983)

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development" Proceedings
of the Workshop on Quantitative Software Models for Reliability, Complexity and Cost, October 1979

Basili, V.R. : and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data, University
of Maryland, Technical Report TR-1235, December 1982 (also appears in SEL-83-003, Collected Software
Engineer1r,g Papers: Volume II, November 1983)
Basili, V. R., and M. V. Zelkowitz, "Designing a Software Memurement Experiment," Proceedings of the
Software Life Cycle Management Workshop, September 1977
Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory," Proceedings of
the Second Software Life Cycle Management Workshop, August 1978 (also appears in SEL-82-004, Collected
Software Engineering Papers: Volume I, July 1982)
Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the Local Environ-
rnent," Computers and Structures, August 1978, vol. 10 (also appears in SEL-82-004, Collected Software
Engineering Papers: Volume I, July 1982)
Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," Proceedings of the
Third International Conference on Software Engineering. New York: Computer Societies Press, 1978
Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives," Proceedings of
the Fifteenth Annual Conference on Computer Persannel Research,, August 1977 (also appears in SEL-82-004,
Collected Software Engineering Papers: Volume I, July 1982)

B-4

ear

e f	
4 SJ

Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences Corpora-
tion, Technical Memorandum, June 1982 (also appears in SEL-83-003, Collected Software Engineering Papers:
Volume 11, November 1983)

{iu Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," Computer Sciences
Corporation, Technical Memorandum, Noveraber 1982 (also appears in SEL-83-003, Collected Software
Engineering Papers: Volume II, November 1983)

Card, D. N., and V. E. Church, "Analysis Software Requirements for the Data Retrieval System," Com-
puter Sciences Corporation Technical Memorandum, March 1983

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of the Flight
j	 Dynamics Analysis System," Parts I and II, Computer Sciences Corporation Technical Memorandum, February

1984

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering Methodologies,"
Proceedings of the Fifth International Conference on Software Engineering. New York: Computer Societies
Press, 1981 (also appears in SEL-82-004, Collected Software Engineering Papers: Volume I, July 1982)

Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic Variables," Pro-
ceedings of the Seventh International Computer Software and Applications Conference. New York: Com-
puter Societies Press, 1983 (also appears in SEL-83-003, Collected Software Engineering Papers: Volume II,
November 1983)

Freburger, K., "A Model of the Software Life Cycle"' (paper prepared for the University of Maryland, December
;w	 1978)
w` Y

Higher Order Software, Inc., TR-9, A Demonstration of AXES for NA VPAK, M. Hamilton and S. Zeldin,
September 1977 (also designated SEL-77-005)

+i	 Hislop, G., "Some Tests of Halstead Measures" (paper prepared for the University of Maryland, December
1978)

Lange, S. F., "A Child's Garden of Complexity Measures" (paper prepared for the University of Maryland,
December 1978)

IvlcGarry, F. E., G. Page, and R. D. Werking, Software Development History of the Dynamics E.rplorer (DE)
j	 Attitude Ground Support System (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models" (paper prepared, for the University of Maryland,
December 1978)

National Aeronautics and Space Administration (NASA), NASA Software Research Technology Workshop
(proceedings), March 1980

Page, G., "Software Engineering Course Evaluation," Computer Sciences Corporation, Technical Memoran-
dum, December 1977

4	 Parr, F., and D. Weiss, "Concepts Used in the Change Report Form," NASA, Goddard Space Flight Center,
Technical Memorandum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and Management of Software Complexity" (paper
prepared for the University of Maryland, December 1976)
Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher Order Languages Study: Addendum,"

(Martin Marietta Corporation, Tech nical Memorandum, September 1977
Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data, Data and
Analysis Center for Software, Special Publication, May 1981
Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and Analysis Center for Soft-
ware, Special Publication, April 1981
Weiss, D. M., "Error and Change Analysis," Naval Research Laboratory, Technical Memorandum,
December 1977
Williamson, I. M., "Resource Model Testing and Information," Naval Research Laboratory, Technical
Memorandum, July 1979

B-5

L^

i^ w

12

Zelkowitz, M. V,, "Resource Estimation for Medium Scale Software Projects," Proceedings of the Twelfth
Conference on the Interface of Statistics and Computer Science. New York: Computer Societies Press, 1979
(also appears in SEL-82 .004, Collected Software Engineering Papers; Volume 1, July 1982)
Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science Research," Empirical
Foundations for Computer and Information Science (proceedings), November 1982 (also appears in SEL-83.003,
Collected Software Engineering Papers. Volume 11, November 1983)
Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement Facility," Proceedings
of the Software Life Cycle Management Workshop, September 1977
Zelkowitz, M. V., and J. Sukri, "Evaluation of the FDAS Prototype as a Software Development System,"
(paper prepared for the University of Maryland, February 1984)

i'

d
n
v

I

s

}

I

}

''	 P

B-6

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf

